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Abstract

In this introduction to the chapter on Monte Carlo sim-
ulation, we give a brief review of the history of the
method, its wide application in today’s sciences and en-
gineering, a top-level categorization of its uses, and pro-
vide some general background as to the individual arti-
cles’ subjects in quantitative finance.

1 The history of the Monte Carlo
method

The history of Monte Carlo methods goes back a long
time. The generic idea of random, or “stochastic”, sam-
pling is straightforward and appealing in its elegance and
has been used for centuries. Possibly the first system-
atic application of statistical sampling techniques in sci-
ence and engineering was by Enrico Fermi in the early
1930’s to predict the results of experiments related to
the properties of the neutron [Met87] which had re-
cently been discovered by James Chadwick in 1932. In
1947, Stanislaw Ulam suggested to John von Neumann
that the newly developed ENIAC computer would give
them the means to carry out calculations based on sta-
tistical sampling with hitherto unattained efficiency and
comparative ease [URvN47]. Their coworker Nicholas
Metropolis dubbed the numerical technique “the Monte
Carlo method” partly inspired by Ulam’s anecdotes of
his gambling uncle who “just had to go to Monte Carlo”.

Since the deployment of the ENIAC which could do
about 5000 additions or 400 multiplications per second
and occupied the size of a large room, computing power
has grown dramatically. In the early 1970’s, a computer
design was introduced that had at its heart an electronic
component first introduced in 1958, a so-called “inte-
grated circuit”. All of a sudden, a computer’s Central
Processing Unit shrank from the size of a domestic re-
frigerator to that of a fingernail. The number of tran-
sistors in a single integrated circuit kept growing at an
almost constant exponential rate since then1, and with
it grew the computing power of the computer. In addi-
tion to that, miniaturization and the introduction of new
materials allowed for equally dramatic increases in com-
puter’s clock speeds. At the time of this writing, on a
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1This phenomenon was surprisingly accurately predicted by
Gordon Moore in 1965, whence it is often referred to as “Moore’s
law”.

Figure 1: The ENIAC. Smithsonian Institution Photo No. 53192
reproduced from [Cer83] with kind permission by Paul Ceruzzi.

CPU that trades for £25 to retail customers, over 2 bil-
lion double precision floating point multiplications can
be carried out per second2 which means that the kind
of hardware used these days as a wordprocessor can do
in one second what used to take the ENIAC over two
months.

It is no surprise, then, that by now the use of Monte
Carlo methods has become ubiquitous in science, tech-
nology, and business. Simulation techniques are used in:
oil well exploration; stellar evolution; electronic chip de-
sign; reactor design; quantum chromo dynamics; mate-
rial sciences; physical chemistry; nanostructure, protein,
and polymer research; operations research, e.g., when
designing the relationships and control mechanisms be-
tween raw materials input, manufacturing, and delivery;
ground and air traffic control systems design; commu-
nication and computer system design and testing, e.g.,
network theory; biomolecular research, e.g., cancer drug
design; all areas of finance and insurance; weather fore-
casting (where it is referred to as “ensemble forecast-
ing”3); and local authorities planning and commision-

2This figure is per se, of course, misleading since any realistic
calculation involves more than the multiplication of the same two
numbers over and over again. It does help, though, to highlight
the scale of speed improvements in hardware since the days of the
ENIAC.

3According to the UK Meteorological Office (www.metoffice.
gov.uk/science/creating/daysahead/ensembles), “an ensemble
forecasting system samples the uncertainty inherent in weather
prediction to provide more information about possible future
weather conditions.” In other words, it is a mini Monte Carlo sim-
ulation consisting of a comparatively small number (∼ 24) of indi-
vidually deterministic weather forecast calculations, each primed
with slightly differing input scenarios based on the currently known
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ing4.
Today, the comparative ease of implementation, in

combination with the readily available required com-
puter power, makes the use of Monte Carlo techniques
more often than not the method of choice. This has
gone to the extent where it is deployed (almost) as a
black-box tool. As an example for this, we give a quote
from the local authority planning and commissioning site
mentioned above:

This spreadsheet based tool gives local authorities ac-
cess to Monte Carlo statistical modelling techniques.
The technique allows local authorities to take account
of the different factors which may affect spend levels.
This will give authorities the ability to more accurately
estimate expenditure to take account of uncertainty.

Monte Carlo is a recognised statistical technique,
which is recommended by the Treasury.

2 Basic ideas

The key defining feature of a Monte Carlo simulation
may be stated as follows.

Definition 1 A Monte Carlo method is any technique
whose purpose it is to approximate a specific measure de-
fined on a given domain by the aid of sampling according
to a pre-determined distributional law.

Note that this definition does not involve any of:-

1. randomness,

2. expectations or moments,

3. stochastic processes.

It may come as a surprise that randomness is not in-
cluded. It is true that randomness of some of the input
numbers is often associated with Monte Carlo methods.
In truth, however, and this was already known to the pi-
oneers of Monte Carlo methods, all that is really needed
for a Monte Carlo method to succeed is asymptotic ad-
herence to the desired pre-determined distributional law
on the given domain that is sampled upon. For the sake
of explanation, but without loss of generality, we shall
assume in the following that the domain is a hypercube
Hm = (0, 1)m for some m ∈ N and that the desired
distribution is uniform in Hm. Any “draw” in the sim-
ulation sequence is thus naturally best to be seen as an
m-tuple, or a vector u ∈ Hm.

Randomness is predominantly used in conceptual con-
siderations for its convenience of guaranteeing uniform
coverage as a consequence of serial independence of
draws. Obviously, if one vector-valued sample drawn
from Hm is in a statistical sense completely independent
from the next draw, and so on, then, asymptotically, the
set of all draws will cover Hm uniformly. However, it is
both intuitive, as well as readily demonstrable, that it

weather system status.
4see, e.g., www.everychildmatters.gov.uk/

resources-and-practice/IG00215
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Figure 2: One thousand random (left) and strategic (right) draws
from (0, 1)2. Note the significantly more uniform coverage of the

unit square on the right.

is fairly easy to achieve a more uniform coverage with a
deliberate strategy that takes into account all the points
that are already part of the simulation. It is in fact possi-
ble to prove that at least asymptotically (i.e., in the limit
of large numbers of draws), by any self-consistent mea-
sure, any strategy (algorithm) to generate numbers that
attempts to “avoid” points already drawn, gives more
uniform coverage of the sampling domain than random
numbers. In this asymptotic sense, amongst all num-
ber sequences one can construct, random numbers are
the worst possible category of numbers one could use for
Monte Carlo simulation purposes. In practical applica-
tions, though, a Monte Carlo simulation is hardly ever
carried out with the intent to determine some kind of
asymptotic behaviour. What matters for real calcula-
tions is to have a result as accurate as possible with the
fewest necessary iterations, and it is this latter part that
makes the use of non-random numbers (also known as
low-discrepancy or quasi-random numbers) slightly more
delicate, and this is discussed in article eqf13-19 by one
of the most accomplished researchers in this field, H.
Niederreiter. Unfortunately, in the 1940’s, no algorithms
for the generation of usable non-random numbers were
available when Monte Carlo simulations on the ENIAC
commenced, despite the fact that the theoritcal founda-
tions for such number sequences had already been laid
in 1916 by Hermann Weyl [Wey16]. As a consequence,
practically used Monte Carlo simulations relied on the
generation of pseudo-random numbers for the first few
decades. The term “pseudo-random” is commonly used
to indicate that these are computer-generated numbers,
as opposed to random numbers as we assume them to
occur in natural phenomena such as radioactive decay.
The distinction is somewhat philosophical, but notewor-
thy nevertheless since it is, after all, not actually possible
to generate randomness on a machine that is designed to
give deterministic results. This is summarized in John
von Neumann’s famous words [Knu81]:

Anyone who considers arithmetical methods of
producing random numbers is, of course, in a
state of sin.

As it turns out, algorithms for the generation of num-
ber sequences that can be considered random enough for
practicaly use, in some sense, can be devised, though, by
the aid of modern number theory, and this is the subject
of article eqf13-03 by P. L’Ecuyer.
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At a mathematical level, Monte Carlo methods have a
wide range of applicability. Of course, they can be used
simply to compute an approximation for the expecation
of a given function, say, E[f(u)], and in finance, this is
probably the most common application: draw N vectors
u1 to uN , and evaluate the equally weighted N -iteration
estimator

ÊN [f(u)] :=
1
N

N∑
i=1

f(ui) . (1)

They can, however, also be used for calculations that
do not fit well into the format E[f(u)]. A common use
of Monte Carlo methods is to find a local or global ex-
tremum of a given function. Examples for this appli-
cation are the so-called Metropolis algorithm, and the
related simulated annealing procedure which, in finance,
is sometimes used for model calibration. Another fre-
quent application of Monte Carlo methods in finance is
the calculation of a quantile level, i.e., to find fq such
that the probability that f(u) < fq is q, or, in other
words, fq is implicitly defined by

E
[
1{f(u)<fq}

]
= q. (2)

The simplest algorithm to estimate fq given q is to draw
a number of, say N , iterations for u, evaluate f(·) for
all the drawn vectors, order the so generated f values by
decreasing size, and pick the value at position bq · Nc.
The quantile level is only one of various measures for
extreme events which are discussed in article eqf13-20.

The Monte Carlo method is widely accepted as the
designated method of choice for the following two types
of calculations:-
• Mathematical problems that are not posed as a set of
concise equations, but instead are only described as a
procedure, or algorithm, or process. An example is the
estimation of statistics for traffic flow problems where
the reaction of individual traffic constituents (e.g., cars)
on ambient conditions is known, but, due to their non-
linearity, the net effect of many such constituents react-
ing to the (re-)actions all other constituents is hard to
predict. Some of the problems Fermi, von Neumann,
Metropolis, and Ulam originally worked on also belong
to this category: they investigated the statistics of neu-
trons passing through matter by simulating repeated im-
pacts with and deflections by atoms. Some problems
are given in the form of stochastic differential equations
(SDEs) for which we have no analytical solutions but
which can be integrated numerically. Numerical integra-
tion of an SDE is mathematically the design of a numer-
ical algorithm that has starting values and an iterative
procedure involving numbers to be sampled from a cer-
tain domain. Standard Euler integration, for instance,
of a simple SDE, over k time steps, typically becomes a
sampling problem on Rk which is usually transformed to
(0, 1)k. Note that the numerical integration is comprised
only by the step that is the conversion of the SDE into
a sampling problem. Numerical integration of SDEs is
technically not a Monte Carlo technique. It is in princi-
ple possible, though rarely done, to evaluate the result-
ing sampling problem with other means such as multi-

dimensional quadratures, etc. In practice, however, nu-
merical integration of stochastic differential equations is
usually combined with a Monte Carlo simulation of the
integration procedure. Articles eqf13-01 and eqf13-02
by E. Platen are dedicated to the subject of numeri-
cal integration of stochastic differential equations, and
how it interacts with the embedding Monte Carlo sim-
ulation. The mathematical background behind the de-
sign of many of these numerical integration schemes is
the equivalent to Taylor’s expansion for stochastic differ-
ential equations, and these stochastic Taylor expansions
are explained in article eqf13-23.
• Mathematical problems that require the evaluation of
an expectation on a high-dimensional domain. The alter-
native to a Monte Carlo simulation for such problems are
lattice methods. The commonly used error measure for
lattice techniques is a term proportional to the square of
the lattice discretisation, say, h2. The number of nodes
(i.e., sampling points) in a lattice scales like N = h−d

with the dimensionality d. Putting this together shows
that the error of a lattice algorithm relates to the number
of evaluated points like ∼ 1/N (2/d). As d increases, the
relationship between a lattice method error and N be-
comes hopelessly inefficient, and this fact is sometimes
referred to as the curse of dimensionality. When us-
ing random numbers, the commonly used error measure
of a Monte Carlo estimator for N iterations scales like
1/
√
N , irrespective of the dimensionality of the domain.

A straightforward scale comparison indicates that the
Monte Carlo error estimator is asymptotically superior
in its behaviour as a function of N as soon as d > 4. For
low-discrepancy numbers, as explained in detail in article
eqf13-19, the error measure scales closer to 1/N which
indicates that lattice methods are (asymptotically) su-
perior to those (used within a Monte Carlo simulation)
only when the dimensionality d is 1.

Beyond these two categories, there are many other ap-
plications of Monte Carlo techniques, often associated
with bespoke Monte Carlo algorithms. Many of these
algorithms belong to the family of Monte Carlo Markov
Chain methods [Liu01, GRS96, Bre99]. These methods
are, to date, less commonly used in finance. An excep-
tion is perhaps the Robbins-Monro algorithm [Aro03]
whose basic purpose is to find the root of a function
that is defined as an expectation (and can practically be
evaluated only by the aid of a Monte Carlo simulation it-
self). The Robbins-Monro algorithm is designed to avoid
having to nest a Monte Carlo simulation as an objec-
tive function inside a numerical root finding procedure.
It has been used in the context of variance reduction
methods which are discussed in article eqf13-10.

3 Monte Carlo methods in quan-
titative finance

The starting point of the use of the Monte Carlo method
in quantitative finance, or specifically, in financial en-
gineering, was probably the suggestion by P. Boyle to
use it for the valuation of options [Boy77]. Despite the
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fact that Monte Carlo methods, initially, had the rep-
utation of being slow, they started to become popular
rather quickly, probably primarily due to the enormous
ease with which they could be implemented. For the
valuation of exotic financial contracts, especially in the
world of equity and foreign exchange derivatives, and
particularly when multiple underlyings were involved, a
Monte Carlo method could be implemented directly from
the contract’s term sheet, without the need for any fur-
ther mathematics other than a model for the dynamics
of the financial underlyings. This made it possible to
combine multi-purpose financial models, which only de-
scribe the (stochastic) dynamics of the financial under-
lyings, with product description language engines, that
allowed any trader, or even structurer, to price, and risk-
manage, entirely new financial products within minutes,
without any new model development or any code recom-
pilation. The use of Monte Carlo simulations is made
particularly easy in this context by the fact that most
financial contracts’ term sheets are written in a language
close to an investor’s perception of the evolution of the
financial contract forward in time, making term sheet
definitions intrinsically well compatible with the Monte
Carlo method’s forward looking nature: if you can de-
scribe it on a term sheet, you can probably implement it
as a payoff. Over time, computers became faster, reduc-
ing concerns some people may have had with respect to
Monte Carlo methods. Eventually, multi-core computers
became commonplace in the financial industry, and since
Monte Carlo methods are so extremely easily amenable
to multi-threading, possibly more so than any other nu-
merical technique, they could readily be adapted to take
advantage of the extra computing power.

The adoption of Monte Carlo methods as a standard
technique was helped not only by pure technological
progress of computers, though. A whole range of mathe-
matical developments and discoveries provided improve-
ments both in terms of robustness and relative speed
that made it possible to carry out Monte Carlo simula-
tions much faster than before. Many of these methods
are known as variance reduction methods, which is the
subject of article eqf13-10. A very important generic
relative speedup technique is the use of low-discrepancy,
as opposed to pseudo-random, numbers, such as the
Niederreiter’88 [Nie88], Niederreiter-Xing [NX95], and
Sobol’ [Sob67, Sob76, PTVF92, Jäc02] numbers, and ar-
ticle eqf13-19 is dedicated to the theory behind these
number sequences. We say relative speedup to indi-
cate that the use of these numbers doesn’t necessarily
make the execution of N iterations actually faster (al-
beit that these numbers are usually faster to generate
than pseudo-random numbers). They provide a rela-
tive speedup due to the fact that, for approximately the
same residual numerical error, one may need only of the
order

√
N iterations in comparison to the use of pseudo-

random numbers. Another type of speedup is associated
with bespoke simulation algorithms for specific mathe-
matical problems such as the numerical integration and
simulation of square root processes described by SDEs

such as

dX = σ
√
X · dW

which is discussed in article eqf13-09. Simulations of
numerical integrations of SDEs with jumps are described
in article eqf13-15. The simulations required for the
important LIBOR market model for interest rate deriva-
tive valuation are particularly challenging due to their
intrinsic high-dimensionality, and are elaborated in arti-
cle eqf13-16.

As Monte Carlo methods started being used with fi-
nancial models, practitioners invented further techniques
for specific purposes that are nowadays considered part
of the standard toolbox. The handling of sensitivity cal-
culations, in the context of Monte Carlo simulations, can
be tricky, due to the inherent nature of a numerical sen-
sitivity calculation to amplify noise. In article eqf13-
04, the most common techniques to deal with this issue
are covered. A mathematically elegant, though in prac-
tice perhaps less frequently used framework, that can
help to address the same issues is the method known
as integration by parts for stochastic functionals and is
presented in article eqf13-12. A particularly interest-
ing development is the family of weighted Monte Carlo
methods which provide means for noise-reduced sensi-
tivity calculation and noise-reduced model calibration.
This framework gives a generic mathematical analysis
that encompasses a proof that the popular control vari-
ates technique for variance reduction is in fact just a
special case of a weighted Monte Carlo method, as dis-
cussed in article eqf13-11.

Finally, we should mention that a lot has been done
with respect to the handling of early exercise opportuni-
ties that may be given within financial contracts. Apart
from simple one-dimensional American equity or FX op-
tions, these are very common among exotic fixed income
derivatives. Since most of these exotic contracts require
rather complex, and high-dimensional, models for real-
istic risk-management and hedging, it became desirable
to find techniques that can be used to evaluate early
exercise rights within a simulation setting. In this chap-
ter, we present four articles on the most important tech-
niques for Bermudan options: eqf13-06 deals with ba-
sis function regression methods for Bermudan options;
in eqf13-13, the Broadie-Glasserman stochastic mesh
technique is discussed, article eqf13-24 explains Bermu-
dan Monte Carlo methods based on exercise boundary
optimization, and article eqf13-25 is on upper bound
methods for callable products.

There is much more one could say about Monte Carlo
methods in finance, some of it highly applicable in many
situations, some of it bespoke for specific applications,
and some of it merely for the sake of its mathematical
elegance. We believe, though, that all of the most im-
portant aspects of Monte Carlo methods in Quantitative
Finance are covered in this chapter. For further details
beyond this, we recommend the books [KP99], [Jäc02],
and [Gla03].
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[Wey16] H. Weyl. Über die Gleichverteilung von Zahlen
mod. eins. Mathematische Annalen, 77:313–352,
1916.

5

www.library.cornell.edu/nr/cbookcpdf.html
www.library.cornell.edu/nr/cbookcpdf.html

	The history of the Monte Carlo method
	Basic ideas
	Monte Carlo methods in quantitative finance
	References

