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Abstract. We give an overview of Monte Carlo meth-
ods that vary the weight given to individual iterations
in a simulation and show how these can be used for
model calibration and hedge calculations. We also dis-
cuss how these methods relate to the control variates
technique for variance reduction.
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Introduction. Weighted Monte Carlo (WMC) is the
name given to an algorithm used to build and calibrate
asset-pricing models for financial derivatives. The al-
gorithm combines two fixtures of the toolbox of quan-
titative modeling. One is Monte Carlo simulation to
generate “paths” for rates and market prices on which
derivatives are written [Jäc02, Gla03]. The other is the
Maximum Entropy (ME) criterion, used to calculate a-
posteriori statistical weights for the paths. ME is one
of the main tools in science for calculating a-posteriori
probabilities in the presence of known constraints asso-
ciated with the probability measure (see [GJM96] for
classical econometric applications of ME).

The essence of the method is as follows [ABF+01]:
let Xt(ω), 0 ≤ t ≤ T, ω ∈ Ω represent a model for the
evolution of market variables or factors of interest. One
of the most common applications is the case when Xt

is a multivariate diffusion or jump diffusion process,
e.g.

dXαt =
∑
j

σαjdWjt + µαdt, 1 ≤ α ≤ n, 1 ≤ j ≤ m.

This process represents an a-priori model for the joint
forward evolution of the market. The parameters of
the model, σ, µ typically correspond to econometrically
estimated factors and expected returns. We note that,
since the model is used for pricing derivatives, some of
the parameters can also be implied from the prices of
at-the-money options and forward prices. In the lan-
guage of financial economics, the measure induced by
Xt is either the “physical measure” or a hybrid of the
physical measure and a risk-neutral measure with re-
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spect to select observable forwards and implied volatil-
ities.

A Monte-Carlo simulation of the ensemble with N
paths is generated numerically, where the paths are
denoted by ωk, i.e. they can be viewed as a sam-
pling of the probability space Ω. The WMC algo-
rithm calibrates the Monte Carlo model so that it
fits the current market prices of M benchmarks or
reference European-style derivatives, with discounted
payoffs g1(ω), g2(ω), ..., gN (ω) and prices c1, c2, ..., cM .
We denote the discounted payoffs along the simulated
paths by

Gik = gi(ωk), i = 1, ...,M, k = 1, ..., N.

WMC associates a probability pk, k = 1, ...N to each
path, in such a way that the pricing equations

ci =
N∑
k=1

Gikpk , (1)

or c = Gp in vector notation, hold for all indices i.
Clearly, equation (1) states that the model reprices
correctly the M reference instruments. In general, we
assume that the number of simulation paths is much
larger than the number of benchmarks (options, for-
wards), which is what happens in practical situations.
The choice of the probabilities is done by applying the
criterion of Maximum Entropy, i.e. by maximizing

H(p1, ..., pN ) = −
N∑
k=1

pk log pk (2)

subject to the M constraints in (1). A least-squares
version of the algorithm (LSWMC) proposes to solve
the problem

min
p


M∑
i=1

(
N∑
k=1

Gikpk − ci

)2

− 2εH(p)

 . (3)

Here ε > 0 is a tolerance parameter that must be ad-
justed by the user. If ε � 1, LSWMC corresponds
to the classical WMC. For finite, relatively small val-
ues, of ε the algorithm returns an approximate solution
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of (1). In practice, the implementation (3) is recom-
mended, since a solution will exist for arbitrary data
{Gik, ci}.
Dual formulation. The WMC (LSWMC) algorithm
is usually solved in its dual form. Define the partition
function

Z (λ1, ..., λM ) =
N∑
k=1

e
PM

i=1 λiGik , (4)

where λ1, ..., λM are Lagrange multipliers. The dual
problem is:

min
λ

{
logZ(λ)−

M∑
i=1

ciλi +
ε

2

M∑
i=1

λ2
i

}
. (5)

The advantage of solving the dual problem is that the
number of variables is M , hence much less than the
number of simulated paths. It is well-known that the
latter problem is convex in λ and always admits a solu-
tion if ε > 0. Furthermore, the probabilities are given
explicitly in terms of the multipliers which solve the
dual problem, namely,

pk =
1
Z

e
PM

i=1 λiGik k = 1, 2, ..., N. (6)

In practical implementations, the dual problem can be
solved with a gradient-based convex optimization rou-
tine such as L-BFGS.

Connection with Kullback-Leibler relative en-
tropy. We can view WMC as an algorithm that min-
imizes, in a discrete setting, the relative entropy, or
Kullback-Leibler distance between the prior probabil-
ity measure induced by the paths (1) (call it P0 ) and
the posterior measure induced by the probability vec-
tor p (call it P ), in the sense that it provides a solution
of

min
P

{
2εD(P ||P0) +

M∑
i=1

[
EP (gi(ω))− ci

]2}

with

D(P ||P0) = EP
(

log
dP
dP0

)
,

where dP
dP0

is the Radon-Nikodym derivative of P with
respect to P0. The latter interpretation, however
should be taken with a grain of salt since the imple-
mentation is always done in the discrete setting, en-
suring that the relative entropy between two measures
defined on the paths of the MC simulation is always
well-defined (unlike in the continuous limit, where ab-
solute continuity in Wiener space is often a stringent
condition).

Connection with Utility Maximization. It can be
shown, via an analysis of the dual problem, that the
WMC algorithm gives a pricing measure which corre-
sponds to optimal investment by a representative in-
vestor in the reference instruments when this investor
has an exponential utility [DGR+02].

Main known applications. Some of the most
well-known applications of this method have been in
the context of multi-asset equity derivatives. In this
case, the a-priori measure corresponds to a multi-
dimensional diffusion for stock prices, generated using
a factor model (or model for the correlation matrix).
The a-posteriori measure is generated by calibrating
to traded options on several underlying assets. For in-
stance, the underlying stocks can be the components
of the Nasdaq 100 index and the reference instruments
all listed options on the underlying stocks. In the lat-
ter case, some care must be taken with the fact that
listed options are American-style, but this difficulty
can be overcome by generating prices of European op-
tions using the implied volatilities of the traded op-
tions. This yields a calibrated multi-asset pricer for
derivatives defined on the components of the Nasdaq
100. As a general rule, it is recommended to calibrate
to forward prices (zero-strike calls) in addition to op-
tions, to ensure put-call parity in the a-posteriori mea-
sure. The value ε = 0.25 seems to give results that
are within the bid-ask spread of listed options con-
tracts [Ave02b, Ave02a].

Another application of WMC is to the calibra-
tion of volatility surfaces for foreign-exchange op-
tions, to obtain a volatility surface that matches for-
ward prices, at-the-money options, strangles and risk-
reversals on all available maturities. Due to the nature
of quotes in FX, the recommended value for the toler-
ance parameter should be of the order of 10−4 in this
case [Ave02b, Ave02a].

Applications of WMC have been also proposed in
the context of Credit Derivatives, most notably for cal-
ibrating so-called top-down models [CM08].

Dispersion Trading. Dispersion trading corresponds
to buying and selling index options and hedging with
options on the component stocks. WMC gives a
method for obtaining a model price for index options
based on a model which incorporates a view of the
correlation between stocks (expressed in the a-priori
probability for Xt) and is calibrated to all the options
on the components of the index. Comparing the model
price (or implied volatility) with the implied volatility
of index options quoted in the market provides a ratio-
nal setting for comparing the prices of index options
with the prices of options on the components of the
index. One of the important features of WMC is that
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it allows the user to incorporate views on the volatility
skew/smile of the components in the valuation pro-
cess [Ave02b, Ave02a].

Connection to control variates. The weighted
Monte Carlo framework can be generalized to any con-
cave function H(p). Avellaneda and Gamba [AG02]
suggest, as one practical approach,

H(p) = −
∑N

k=1 Ψ(pk) (7)

with Ψ(·) being any convex function. Obvious choices
are

Ψ(Q)(p) = (p− 1
N )2 (Quadratic) (8)

Ψ(S)(p) = p log p (Shannon) . (9)

The problem of minimization of −H(p) subject to the
constraints (probability normalization and calibration)

1 = p>n and c = Gp , (10)

with the diagonal vector n := (1, · · · , 1)> ∈ RN (to
simplify summation notation), leads to the Lagrange
function

L(p,λ, µ) = −H(p)− λ>(Gp− c)− µ
(
p>n− 1

)
.

(11)
Assuming the existence of an extremum, solving

∇p L(p,λ, µ) = 0 (12)

gives
pk = ψ−1(λ>Gek + µ) (13)

with ψ(p) = dΨ(p)
dp and ek being the unit vector along

the k-th axis in RN . For the specific choices (8)
and (9), this means

p(Q)

k = 1
N + 1

2λ
>G

(
ek − 1

Nn
)

(Quadratic) (14)

p(S)

k = eλ
>Gek

/
Z(λ) (Shannon) , (15)

with Z(λ) =
∑N

k=1 eλ
>Gek , where we have eliminated

µ using the probability normalization condition 1 =
p>n. Substituting (14) and, respectively, (15), back
into (11) leads to the Lagrange dual functions

L̂(Q)(λ) = λ>(c−G n
N ) + N

2 λ
>G(nn

>

N2 − 1
N )G>λ

(16)

L̂(S)(λ) = λ>c− logZ(λ) . (17)

The dual formulation of the original problem is to find

arg max
λ
L̂(λ) . (18)

For the quadratic case, this is guaranteed to have at
least one solution given by the linear system

N
2 G( 1

N −
nn>

N2 )G>λ(Q) = c−G n
N . (19)

Note that

G( 1
N −

nn>

N2 )G> = 〈gg>〉P0
N − 〈g〉

P0
N 〈g〉

P0
N

> (20)

= 〈g, g〉P0
N (21)

where 〈·〉P0
N stands for the (Monte Carlo estimator of

the) expectation under the original measure P0 com-
puted as the plain average over the N simulated paths,
and 〈·, ·〉P0

N for the according covariance (defined such
that 〈a, b〉 = 〈b,a〉>). In other words,

λ(Q) = 2
N 〈g, g〉

P0
−1

N ·
(
c− 〈g〉P0

N

)
(22)

and

p(Q) = n
N + ( nN −

nn>

N2 )G>·〈g, g〉P0
−1

N ·
(
c− 〈g〉P0

N

)
. (23)

Note that the inverse of the auto-covariance matrix of
the calibration instruments is to be understood in a
Moore-Penrose sense to safeguard against the singular
case.

When using these probabilities for the valuation of
a payoff v, with vk := v(ωk), we arrive at

〈v〉P (Q)

N = v>p(Q) (24)

= 〈v〉P0
N + 〈v, g〉P0

N 〈g, g〉
P0
−1

N ·
(
c− 〈g〉P0

N

)
(25)

which is identical to the classic control variate
rule [Jäc02, Gla03].

For L̂(S)(λ), a second order expansion in λ around
zero gives

L̂(S) = − logN +λ>(c−〈g〉P0
N )− 1

2λ
>〈g, g〉P0

N λ+O(λ3)
(26)

whence we obtain the analytical initial guess

λ(S),1 := N
2 λ

(Q) (27)

for any iterative procedure to solve (18). A simple
algorithm can be based on a second order expansion
of L̂(S)(λ) around the previous iteration’s estimate for
λ(S). This gives

λ(S),i+1 = λ(S),i (28)

+
(
GΠ(S),iG> −Gp(S),ip (S),i

>
G>
)−1

(c−Gp(S),i)

with

Π(S),i := diag(p(S),i

1 , · · · , p(S),i

N ) ∈ RN×N (29)

and
p(S),i

k = p(S)

k (λ(S),i) (30)

as defined in equation (15). Interestingly, the term

Gp(S),i

in (28) is the vector of expectations for the M calibra-
tion instruments under the (numerical) measure P (S),i
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defined by the numerically computed vector of proba-
bilities p(S),i, and(

GΠ(S),iG> −Gp(S),ip (S),i>G>
)

is the associated (numerical) covariance matrix of the
calibration instruments. The simple algorithm is thus,
in a formal notation, to start with λ(S),0 = 0 (in all
entries of the vector), to compute

p(S),i = p(S)(λ(S),i)

using equation (15), to proceed to

λ(S),i+1 = λ(S),i + 〈g, g〉P (S),i

N

−1

· (c− 〈g〉P (S),i

N ) , (31)

and to p(S),i+1, and so on.
It is in general possible that a solution to (18) may

not exist for L̂(S) if the model’s initial calibration im-
plies prices for the calibration instruments that are too
far away from c. When this happens, any iterative pro-
cedure will experience that L̂(S)(λ) grows at an ever
decreasing rate in some direction in RM , and, even-
tually, the solver will terminate when it hits an inter-
nal minimum-progress criterion. A numerical approx-
imation for λ(S) computed in this way will represent a
maximum-entropy best-possible fit, and is still usable
in a vein similar to that obtained by the least squares
approach mentioned in the beginning. An inexpensive
warning indication for this situation is given when any
of the p(Q)

k are negative. Note that this then also sig-
nals that the classic control variate method implicitly
uses a (numerical) measure that is not equivalent to the
original model’s measure, which in turn may result in
arbitrageable prices.

Hedge ratios. The fact that the fine tuning of the
pricing measure P is achieved by varying the proba-
bilities of the paths such that hedge instruments are
correctly repriced allows for the calculation of hedge
ratios without recalibration of the original model, and
without resimulation. This can be seen as follows. We
seek to compute the sensitivity of 〈v〉PN with respect
to the calibration prices c. Since the probability vec-
tor p(λ) is computed as an analytical function of the
Lagrange multipliers, which in turn are computed nu-
merically from c, we have

∇c〈v〉PN = ∇c(p>v) = J · ∇λp>v (32)

with the elements of the Jacobian matrix J given by

Jlm = ∂clλm . (33)

Given any Ψ, which, together with the calibration con-
straints, ultimately defines our desired pricing measure

P , we can combine equation (13) and the probability
normalization condition 1 = p>n to arrive at

∇c〈v〉PN = sPH · J · 〈g, v〉PH
N (34)

where we have defined the hedge measure PH in terms
of the (numerical) probabilities pPH whose elements are
given by

sPH :=
N∑
k=1

1
/
ψ′(pP

k ) with p
PH
k :=

1 /ψ′(pP
k )

sPH
.

(35)
What remains to be calculated is the Jacobian J . This
can be done in one of three ways, depending on the
choice of Ψ:

1. Analytically (explicitly). For instance, for Ψ(Q),

we obtain sP
(Q)
H = 1, p

P
(Q)
H
k = 1

N , P (Q)
H = P0, and

therefore

∇c〈v〉P
(Q)

N = 〈g, g〉P0
N

−1
· 〈g, v〉P0

N . (36)

2. Numerically. If λP is computed by an iterative
procedure that starts with no information other
than the simulated paths and c itself such as in-
dicated in (28), the chain rule propagation can be
derived and implemented as part of the iterative
procedure. This approach may have to be chosen
if no solution to (18) exists. An alternative would
be to precalibrate the original model better such
that a Monte Carlo weighting scheme can be found
that reprices the calibration instruments exactly.

3. Analytically (implicitly). As long as a solution
to (18) exists, i.e., as long as the weighted Monte
Carlo scheme reprices the calibration instruments
correctly, we can use the fact that ∇c〈g〉PN must be
the M×M identity matrix. This gives the generic
result

∇c〈v〉PN = 〈g, g〉PH
N

−1
· 〈g, v〉PH

N , (37)

which means that for any P0 and P , i.e., Ψ, that
permit perfect repricing of the hedges (calibration
instruments) under P , the hedge ratios for any
payoff v can be seen as a regression of the co-
variances between v and the hedge instruments
against the auto-covariances of the hedge instru-
ments under the calibration-adjusted measure PH.

It is worth mentioning that for Ψ(S)(p) = p log p, we

obtain sP
(S)
H = 1, p

P
(S)
H
k = pP (S)

k , P (S)
H = P (S), and

∇c〈v〉P
(S)

N = 〈g, g〉P (S)

N

−1

· 〈g, v〉P (S)

N . (38)
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In other words, the calibration-adjusted measure is the
same as the pricing measure. This is a special property
of the Shannon entropy pricing measure P (S).

As a final note on hedge ratio calculations with
WMC, it should be noted that unlike most other sen-
sitivity calculation schemes used with Monte Carlo
methods, the above shown analysis results directly in
hedge ratios, bypassing the otherwise common inter-
mediate stage of model parameter sensitivities which
require remapping to hedge ratios for tradeable instru-
ments. This feature greatly reduces the noise often
observed on risk figures that are computed by numer-
ically fitting model parameters to market observable
prices since the noise-compounding effects of recalibra-
tion and numerical calculation of sensitivities of hedge
instrument prices to model parameters are avoided.
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