
SIMULATION OF SQUARE-ROOT PROCESSES

LEIF B.G. ANDERSEN, PETER JÄCKEL, AND CHRISTIAN KAHL

Abstract. We discuss methods for time-discretization and simulation of square-
root SDEs, both in isolation (CIR process) and as part of vector-SDEs model-
ing stochastic volatility (Heston model). Both exact and biased discretization
methods are covered.

1. Introduction

Square-root diffusion processes are popular in many branches of quantitative
finance. Guaranteed to stay non-negative, yet almost as tractable as a Gaussian
process, the mean-reverting square-root process has found applications ranging from
short-rate modeling of the term structure of interest rates, to credit derivative
pricing, and to stochastic volatility models, just to name a few.

A thorough description of the theoretical properties of square-root processes as
well as their generalization into multi-factor affine jump-diffusion processes can be
found in [7] where a full literature survey is also available. While we shall rely on
some of these results in the remainder of this article, our focus here is on the problem
of generating Monte Carlo paths for the one-factor square-root process, first in
isolation and later in combination with a log-normal asset process (as required
in most stochastic volatility applications). As we shall see, such path-generation
can, under many relevant parameter settings, be surprisingly challenging. Indeed,
despite the popularity and the longevity of the square-root diffusion – the first uses
in finance date back several decades – it is only in the last few years that a truly
satisfactory palette of algorithms has been established.

2. Problem Definition and Key Theoretical Results

Let x(t) be a scalar random variable satisfying a stochastic differential equation
(SDE) of the mean-reverting square-root type, that is

(1) dx(t) = κ (θ − x(t)) dt+ ε
√
x(t) dW (t) , x(0) = x0 ,

where κ, θ, ε are positive constants and W (t) is a Brownian motion in a given
probability measure. Applications in finance of (1) includes the seminal CIR model
for interest rates (see eqf11-025) and the Heston stochastic volatility model (see
eqf08-018). In practical usage of such models (e.g. to price options) we are often
faced with the problem of generating Monte Carlo paths of x on some discrete time-
line. To devise a simulation scheme, it suffices to contemplate the more fundamental
question of how, for an arbitrary increment ∆, to generate a random sample of
x(t + ∆) given x(t); repeated application of the resulting one-period scheme will
produce a full paths of x on an arbitrary set of discrete dates.

Key words and phrases. CIR process, Heston process, Monte Carlo simulation, Euler scheme,
Milstein scheme, moment matching, SDE discretization.

1

2 LEIF B.G. ANDERSEN, PETER JÄCKEL, AND CHRISTIAN KAHL

To aid in the construction of simulation algorithms, let us quickly review a few
well-known theoretical results for (1).

Proposition 2.1. Let F (z; ν, λ) be the cumulative distribution function for the
non-central chi-square distribution with ν degrees of freedom and non-centrality
parameter λ:

(2) F (z; ν, λ) = e−λ/2
∞∑

j=0

(λ/2)j

j!2ν/2+jΓ (ν/2 + j)

∫ z

0

yν/2+j−1e−x/2 dy .

For the process (1) define

(3) d = 4κθ/ε2 ; n(t, T) =
4κe−κ(T−t)

ε2
(
1− e−κ(T−t)

) , T > t .

Let T > t. Conditional on x(t), x(T) is distributed as e−κ(T−t)/n(t, T) times
a non-central chi-square distribution with d degrees of freedom and non-centrality
parameter x(t)n(t, T). That is,

(4) Pr (x(T) < x|x(t)) = F

(
x · n(t, T)
e−κ(T−t)

; d, x(t) · n(t, T)
)
.

From the known properties of the non-central chi-square distribution, the fol-
lowing Corollary easily follows.

Corollary 2.2. For T > t, x(T) has the following first two conditional moments:

E (x(T)|x(t)) = θ + (x(t)− θ) e−κ(T−t) ;(5)

Var (x(T)|x(t)) = x(t)ε2e−κ(T−t)

κ

(
1− e−κ(T−t)

)
+ θε2

2κ

(
1− e−κ(T−t)

)2
.(6)

Proposition 2.3. Assume that x(0) > 0. If 2κθ ≥ ε2 then the process for x can
never reach zero. If 2κθ < ε2, the origin is accessible and strongly reflecting.

The condition 2κθ ≥ ε2 in Proposition 2.3 is often known as the Feller condition
(see [12]) for (1). When (1) is used as a model for interest rates or credit spreads,
market-implied model parameters are typically such that the Feller condition is
satisfied. However, when (1) represent a stochastic variance process (as in Section
4), the Feller condition rarely holds. As it turns out, a violation of the Feller
condition may increase the difficulty of Monte Carlo path generation considerably.

3. Simulation Schemes

3.1. Exact Simulation. According to Proposition 2.1, the distribution of x(t+∆)
given x(t) is known in closed form. Generation of a random sample of x(t + ∆)
given x(t) can therefore be done entirely bias-free by sampling from a non-central
chi-square distribution. Using the fact that a non-central chi-square distribution
can be seen as a regular chi-square distribution with Poisson-distributed degrees of
freedom (see [9]), the following algorithm can be used.

(1) Draw a Poisson random variable N , with mean 1
2x(t)n(t, t+ ∆).

(2) Given N , draw a regular chi-square random variable χ2
v, with v = d + 2N

degrees of freedom.
(3) Set x(t+ ∆) = χ2

v · exp (−κ∆) /n(t, t+ ∆).

SIMULATION OF SQUARE-ROOT PROCESSES 3

Steps 1 and 3 of this algorithm are straightforward, but Step 2 is somewhat
involved. In practice, generation of chi-squared variables would most often use
one of several available techniques for the gamma-distribution, a special case of
which is the chi-square distribution. A standard algorithm for the generation of
Gamma variates of acceptance-rejection type is the Cheng-Feast algorithm [5], and
a number of others are listed in [9], though, direct generation by the aid of the
inverse cumulative distribution function [6] is also a practically viable option.

We should note that if d > 1, it may be numerically advantageous to use a
different algorithm, based on the convenient relation

(7) χ′2d (λ) d=
(
Z +

√
λ
)2

+ χ2
d−1 , d > 1 ,

where d= denotes equality in distribution, χ′2d (λ) is a non-central chi-square variable
with d degrees of freedom and non-centrality parameter λ, and Z is an ordinary
N (0, 1) Gaussian variable. We trust that the reader can complete the details on
application of (7) in a simulation algorithm for x(t+ ∆).

One might think that the existence of an exact simulation-scheme for x(t + ∆)
would settle once and for all the question of how to generate paths of the square-root
process. In practice, however, several complications may arise with the application
of the algorithm above. Indeed, the scheme is quite complex compared with many
standard SDE discretization schemes and may not fit smoothly into existing soft-
ware architecture for SDE simulation routines. Also, computational speed may be
an issue, and the application of acceptance-rejection sampling will potentially cause
a “scrambling effect” when process parameters are perturbed, resulting in poor sen-
sitivity computations. While caching techniques can be designed to overcome some
of these issues, storage, look-up, and interpolation of such a cache pose their own
challenges. Further, the basic scheme above provides no explicit link between the
paths of the Brownian motion W (t) and that of x(t), complicating applications
in which, say, multiple correlated Brownian motions need to be advanced through
time.

In light of the discussion above, it seems reasonable to also investigate the ap-
plication of simpler simulation algorithms. These will typically exhibit a bias for
finite values of ∆, but convenience and speed may more than compensate for this,
especially if the bias is small and easy to control by reduction of step-size. We
proceed to discuss several classes of such schemes.

3.2. Biased Taylor-Type Schemes.

3.2.1. Euler Schemes. Going forward, let us use x̂ to denote a discrete-time (biased)
approximation to x. A classical approach to constructing simulation schemes for
SDEs involves the application of Itô-Taylor expansions, suitably truncated. See
eqf13-001, eqf13-002, and eqf13-23 for details. The simplest such scheme is the
Euler scheme, a direct application of which would write

(8) x̂(t+ ∆) = x̂(t) + κ(θ − x̂(t))∆ + ε
√
x̂(t)Z

√
∆ ,

where Z is N (0, 1) Gaussian variable. One immediate (and fatal) problem with (8)
is that the discrete process for x can become negative with non-zero probability,
making computation of

√
x̂(t) impossible and causing the time-stepping scheme

to fail. To get around this problem, several remedies have been proposed in the
literature, starting with the suggestion in [13] that one simply replace

√
x̂(t) in (8)

4 LEIF B.G. ANDERSEN, PETER JÄCKEL, AND CHRISTIAN KAHL

with
√
|x̂(t)|. [14] reviews a number of such “fixes”, concluding that the following

works best:

(9) x̂(t+ ∆) = x̂(t) + κ(θ − x̂(t)+)∆ + ε
√
x̂(t)+ Z

√
∆ ,

where we use the notation x+ = max(x, 0). In [14] this scheme is denoted “full
truncation”; its main characteristic is that the process for x̂ is allowed to go below
zero, at which point the process for x becomes deterministic with an upward drift
of κθ.

3.2.2. Higher-Order Schemes. The scheme (9) has first-order weak convergence, in
the sense that expectations of functions of x will approach their true values as
O(∆). To improve convergence, it is tempting to apply a Milstein scheme, the
most basic of which is

(10) x̂(t+ ∆) = x̂(t) + κ(θ − x̂(t))∆ + ε
√
x̂(t)Z

√
∆ +

1
4
ε2∆

(
Z2 − 1

)
.

As was the case for (8), this scheme has a positive probability of generating negative
values of x̂ and therefore cannot be used without suitable modifications. [11] list
several other Milstein-type schemes, some of which allow for a certain degree of
control over the likelihood of generating negative values. One particularly appealing
variation is the implicit Milstein scheme, defined as

(11) x̂(t+ ∆) =
x̂(t) + κθ∆ + ε

√
x̂(t)Z

√
∆ + 1

4ε
2∆
(
Z2 − 1

)
1 + κ∆

.

It is easy to verify that this discretization scheme will result in strictly positive
paths for the x process if 4κθ > ε2. For cases where this bound does not hold,
it will be necessary to modify (11) to prevent problems with the computation of√
x̂(t). For instance, whenever x̂(t) drops below zero, we could use (9) rather than

(11).
Under certain sufficient regularity conditions, Milstein schemes have second-

order weak convergence. Due to the presence of a square-root in (1), these sufficient
conditions are violated here, and one should not expect (11) to have second-order
convergence for all parameter values, even the ones that satisfy 4κθ > ε2. Numer-
ical tests of Milstein schemes for square-root processes can be found in [11] and
[9]; overall these schemes perform fairly well in certain parameter regimes, but are
typically less robust than the Euler scheme.

3.3. Moment Matching Schemes.

3.3.1. Log-Normal Approximation. The simulation schemes introduced in Section
3.2 all suffer to various degrees from an inability to keep the path of x non-negative
throughout. One, rather obvious, way around this is to draw x̂(t+ ∆) from a user-
selected probability distribution that i) is reasonably close to the true distribution
of x(t + ∆); and ii) is certain not to produce negative values. To ensure that i) is
satisfied, it is natural to select the parameters of the chosen distribution to match
one or more of the true moments for x(t + ∆), conditional upon x(t) = x̂(t). For
instance, if we assume that the true distribution of x(t + ∆) is well approximated
by a log-normal distribution with parameters µ and σ, we write (see [2])

(12) x̂(t+ ∆) = eµ+σZ ,

SIMULATION OF SQUARE-ROOT PROCESSES 5

where Z is a Gaussian random variable, and µ, σ are chosen to satisfy

eµ+ 1
2 σ2

= E(x(t+ ∆)|x(t) = x̂(t)) ,(13)

e2(µ+ 1
2 σ2)

(
eσ2

− 1
)

= Var (x(t+ ∆)|x(t) = x̂(t)) .(14)

The results in Corollary 2.2 can be used to compute the right-hand sides of this
system of equations, which can then easily be solved analytically for µ and σ.

As is the case for many other schemes, (12) works best if the Feller condition is
satisfied. If not, the lower tail of the log-normal distribution is often too thin to
capture the true distribution shape of x̂(t+ ∆) – see Figure 1.

Figure 1. Cumulative Distribution of x

0

0.2

0.4

0.6

0.8

1

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

y

P
r(

x
(T

)<
y

)

Exact

Lognormal

Gaussian

Notes: The figure shows the cumulative distribution function for x(T) given x(0), with

T = 0.1. Model parameters were x(0) = θ = 4%, κ = 50%, and ε = 100%. The lognormal

and Gaussian distributions in the graph were parameterized by matching mean and

variances to the exact distribution of x(T).

3.3.2. Truncated Gaussian. Figure 1 demonstrates that the density of x̂(t + ∆)
may sometimes be nearly singular at the origin. To accommodate this, one could
contemplate inserting an actual singularity through outright truncation at the origin
of a distribution that may otherwise go negative. Using a Gaussian distribution for
this, say, one could write

(15) x̂(t+ ∆) = (µ+ σZ)+ ,

where µ and σ are determined by moment-matching, along the same lines as in
Section 3.3.1 above. While this moment-matching exercise cannot be done in en-
tirely analytical fashion, a number of caching tricks outlined in [3] can be used to
make the determination of µ and σ essentially instantaneous. As documented in
[3], the scheme (15) is robust and generally has attractive convergence properties
when applied to standard option pricing problems. Being fundamentally Gaussian
when x̂(t) is far from the origin, (15) is somewhat similar to the Euler scheme (9),

6 LEIF B.G. ANDERSEN, PETER JÄCKEL, AND CHRISTIAN KAHL

although performance of (15) is typically somewhat better than (9). Unlike (9), the
truncated Gaussian scheme (15) also ensures, by construction, that negative values
of x̂(t+ ∆) cannot be attained.

3.3.3. Quadratic-Exponential. We finish our discussion of biased schemes for 1 with
a more elaborate moment-matched scheme, based on a combination of a squared
Gaussian and an exponential distribution. In this scheme, for large values of x̂(t),
we write

(16) x̂(t+ ∆) = a (b+ Z)2 ,

where Z is a standard Gaussian random variable, and a and b are certain constants,
to be determined by moment-matching. a and b will depend on the time-step ∆ and
x̂(t), as well as the parameters in the SDE for x. While based on well-established
asymptotics for the non-central chi-square distribution (see [3]), formula (16) does
not work well for low values of x̂(t) – in fact, the moment-matching exercise fails
to work – so we supplement it with a scheme to be used when x̂(t) is small . [3]
shows that a good choice is to approximate the density of x̂(t+ ∆) with

(17) Pr (x̂(t+ ∆) ∈ [x, x+ dx]) ≈
(
pδ(x) + β(1− p)e−βx

)
dx , x ≥ 0 ,

where δ is a Dirac delta-function, and p and β are non-negative constants to be
determined. As in the scheme in Section 3.3.2, we have a probability mass at the
origin, but now the strength of this mass (p) is explicitly specified, rather than
implied from other parameters. The mass at the origin is supplemented with an
exponential tail. It can be verified that if p ∈ [0, 1] and β ≥ 0, then (17) constitutes
a valid density function.

Assuming that we have determined a and b, Monte Carlo sampling from (16) is
trivial. To draw samples in accordance with (17), we can generate a cumulative
distribution function

(18) Ψ(x) = Pr (x̂(t+ ∆) ≤ x) = p+ (1− p)
(
1− e−βx

)
, x ≥ 0 ,

the inverse of which is readily computable, allowing for efficient generation of ran-
dom draws by the inverse distribution method.

What remains is the determination of the constants a, b, p, and β, as well as a
rule for when to switch from (16) to sampling from (18). The first problem is easily
settled by moment-matching techniques.

Proposition 3.1. Let m , E (x(t+ ∆)|x(t) = x̂(t)) and s2 , Var (x(t+ ∆)|x(t) = x̂(t))
and set ψ = s2/m2. Provided that ψ ≤ 2, set

(19) b2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1 ≥ 0

and

(20) a =
m

1 + b2
.

Let x̂(t+∆) be as defined in (16); then E (x̂(t+ ∆)) = m and Var (x̂(t+ ∆)) = s2.

Proposition 3.2. Let m, s, and ψ be as defined in Proposition 3.1. Assume that
ψ ≥ 1 and set

(21) p =
ψ − 1
ψ + 1

∈ [0, 1) ,

SIMULATION OF SQUARE-ROOT PROCESSES 7

and

(22) β =
1− p

m
=

2
m(ψ + 1)

> 0 .

Let x̂(t+∆) be sampled from (18); then E (x̂(t+ ∆)) = m and Var (x̂(t+ ∆)) = s2.

The termsm, s, ψ defined in the two propositions above are explicitly computable
from the result in Corollary 2.2. For any ψc in [1, 2], a valid switching rule is to use
(16) if ψ ≤ ψc and to sample (18) otherwise. The exact choice for ψc is non-critical;
ψc = 1.5 is a good choice.

The quadratic-exponential (QE) scheme outlined above is typically the most
accurate of the biased schemes introduced in this article. Indeed, in most practical
application the bias introduced by the scheme is statistically undetectable at the
levels of Monte Carlo noise acceptable in practical applications; see [3] for numerical
tests under a range of challenging conditions. Variations on the QE scheme without
an explicit singularity in zero can also be found in [3].

4. Stochastic Volatility Simulation

As mentioned earlier, square-root processes are commonly used to model sto-
chastic movements in the volatility of some financial asset. A popular example of
such an application is the Heston model [10], defined by a vector-SDE of the form1

dY (t) = Y (t)
√
x(t) dWY (t) ,(23)

dx(t) = κ (θ − x(t)) dt+ ε
√
x(t) dW (t) ,(24)

with dWY (t) ·dW (t) = ρdt, ρ ∈ [−1, 1]. For numerical work, it is useful to recognize
that the process for Y (t) is often relatively close to geometric Brownian motion,
making it sensible to work with logarithms of Y (t), rather than Y (t) itself. An
application of Itô’s Lemma shows that (23)-(24) is equivalent to

d lnY (t) = −1
2
x(t) dt+

√
x(t) dWY (t) ,(25)

dx(t) = κ (θ − x(t)) dt+ ε
√
x(t) dW (t) .(26)

We proceed to consider the joint simulation of (25)-(26).

4.1. Broadie-Kaya Scheme. As demonstrated in [4], it is possible to simulate
(25)-(26) bias-free. To show this, first integrate the SDE for x(t) and rearrange:

(27)
∫ t+∆

t

√
x(u) dW (u) = ε−1

(
x(t+ ∆)− x(t)− κθ∆ + κ

∫ t+∆

t

x(u) du

)
.

Performing a Cholesky decomposition we can also write

(28) d lnY (t) = −1
2
x(t) dt+ ρ

√
x(t) dW (t) +

√
1− ρ2

√
x(t) dW ∗(t) ,

where W ∗ is a Brownian motion independent of W . An integration yields

(29) lnY (t+ ∆) = lnY (t) +
ρ

ε
(x(t+ ∆)− x(t)− κθ∆)

+
(
κρ

ε
− 1

2

)∫ t+∆

t

x(u) du+
√

1− ρ2

∫ t+∆

t

√
x(u) dW ∗(u) ,

1We assume that Y is a martingale in the chosen measure; adding a drift is straightforward.

8 LEIF B.G. ANDERSEN, PETER JÄCKEL, AND CHRISTIAN KAHL

where we have used (27). Conditional on x(t+∆) and
∫ t+∆

t
x(u) du, it is clear that

the distribution of lnY (t+ ∆) is Gaussian with easily computable moments. After
first sampling x(t + ∆) from the non-central chi-square distribution (as described
in Section 3.1), one then performs the following steps:

(1) Conditional on x(t+ ∆) (and x(t)) draw a sample of I =
∫ t+∆

t
x(u) du.

(2) Conditional on x(t + ∆) and I, use (29) to draw a sample of lnY (t + ∆)
from a Gaussian distribution.

While execution of the second step is straightforward, the first one is decidedly
not, as the conditional distribution of the integral I is not known in closed form.
In [4], the authors instead derive a characteristic function, which they numerically
Fourier-invert to generate the cumulative distribution function for I, given x(t+∆)
and x(t). Numerical inversion of this distribution function over a uniform random
variable finally allows for generation of a sample of I. The total algorithm requires
great care in numerical discretization to prevent introduction of noticeable biases
and is further complicated by the fact that the characteristic function for I contains
two modified Bessel functions.

The Broadie-Kaya algorithm is bias-free by construction, but its complexity and
lack of speed is problematic in some applications. At the cost of introducing a
(small) bias, [15] improves computational efficiency by introducing certain approxi-
mations to the characteristic function of time-integrated variance, enabling efficient
caching techniques.

4.2. Other Schemes.

4.2.1. Taylor-Type Schemes. In their examination of “fixed” Euler-schemes, [14]
suggests simulation of the Heston model by combining (9) with the following scheme
for lnY :

(30) ln Ŷ (t+ ∆) = ln Ŷ (t)− 1
2
x̂(t)+∆ +

√
x̂(t)+ ZY

√
∆ ,

where ZY is a Gaussian N (0, 1) draw, correlated to Z in (9) with correlation coef-
ficient ρ. For the periods where x̂ drops below zero in (9), the process for Ŷ comes
to a stand-still.

[11] consider several alternative schemes for Y , the most prominent being the
“IJK” scheme, defined as

ln Ŷ (t+ ∆) = ln Ŷ (t)− ∆
4

(x̂(t+ ∆) + x̂(t)) + ρ
√
x̂(t)Z

√
∆

+
1
2

(√
x̂(t+ ∆) +

√
x̂(t)

)(
ZY

√
∆− ρZ

√
∆
)

+
1
4
ερ∆

(
Z2 − 1

)
.(31)

Here, x̂(t+ ∆) and x̂(t) are meant to be simulated by the implicit Milstein scheme
(11); again the correlation between the Gaussian samples ZY and Z is ρ.

4.2.2. Simplified Broadie-Kaya. We recall from the discussion earlier that the com-
plicated part of the Broadie-Kaya algorithm was the computation of

∫ t+∆

t
x(u) du,

conditional on x(t) and x(t+∆). [3] suggests a naive, but effective, approximation,
based on the idea that

(32)
∫ t+∆

t

x(u) du ≈ ∆ [γ1x(t) + γ2x(t+ ∆)] ,

SIMULATION OF SQUARE-ROOT PROCESSES 9

for certain constants γ1 and γ2. The constants γ1 and γ2 can be found by moment-
matching techniques (using results from [8], p. 16), but [3] presents evidence that
it will often be sufficient to use either an Euler-like setting (γ1 = 1, γ2 = 0) or a
central discretization (γ1 = γ2 = 1

2). In any case, (32) combined with (29) gives rise
to a scheme for Y -simulation that can be combined with any basic algorithm that
can produce x̂(t) and x̂(t+∆). [3] contains numerical results for the case where x̂(t)
and x̂(t+∆) are simulated by the algorithms in Sections 3.3.2 and 3.3.3; results are
excellent, particularly when the QE algorithm in Section 3.3.3 is used to sample x.

4.2.3. Martingale Correction. Finally, let us note that some of the schemes outlined
above (including (31) and the one in Section 4.2.2)) will generally not lead to
martingale-behavior of Ŷ ; that is, E(Ŷ (t + ∆)) 6= E(Ŷ (t)). For the cases where
the error e = E(Ŷ (t + ∆)) − E(Ŷ (t)) is analytically computable, it is, however,
straightforward to remove the bias by simply adding −e to the sample value for
Ŷ (t+ ∆). [3] gives several examples of this idea.

5. Further reading

In this article, we restricted ourselves to the presentation of relatively simple
methods which in the two-dimensional Heston model setting only require two vari-
ates per time step. Such schemes are often the most convenient in actual trading
systems and for implementations that rely on Wiener processes built from low
discrepancy numbers. More complicated high-order Taylor schemes, which often
require extra variates, are described in [13]. The efficacy of such methods are,
however, unproven in the specific setting of the Heston model.

In recent work, [1] constructs second-order scheme for the CIR process, using a
switching idea similar to that of the QE scheme. For the Heston process, [1] devel-
ops a “second order scheme candidate” involving three variates per time step; the
numerical performance of the scheme compares favorably with Euler-type schemes.

6. Related EQF Articles

• eqf08-018: Heston model
• eqf11-025: Cox-Ingersoll-Ross (CIR) model
• eqf11-029: Affine models
• eqf13-001: Monte Carlo simulation for stochastic differential equations
• eqf13-002: Scenario simulation for stochastic differential equations
• eqf13-023: Stochastic Taylor expansions

References

[1] Alfonsi, A. (2008), “A second-order discretization scheme for the CIR process: application
to the Heston model,” Working Paper, Institut für Mathematik, TU Berlin.

[2] Andersen, L. and R. Brotherton-Ratcliffe (2005), “Extended Libor Market Models with Sto-
chastic Volatility”, Journal of Computational Finance, 9 (1), pp. 1-40.

[3] Andersen, L. (2008), “Simple and Efficient Simulation of the Heston stochastic Volatility
Model”, Journal of Computational Finance, 11 (3), pp. 1-42.

[4] Broadie, M. and Ö. Kaya (2006), “Exact simulation of stochastic volatility and other affine
jump diffusion processes”, Operations Research, vol. 54, no. 2.

[5] Cheng, R. and G. Feast (1980), “Gamma Variate Generators with Increased Shape Parameter
Range”, Commun. ACM, 23 (7), pp. 389-394.

[6] DiDonato, A. R and A. H. Morris (1987). “Incomplete gamma function ratios and their
inverse”, ACM TOMS, 13, pp. 318–319.

10 LEIF B.G. ANDERSEN, PETER JÄCKEL, AND CHRISTIAN KAHL

[7] Duffie, D., J. Pan and K. Singleton (2000), “Transform analysis and asset pricing for affine
jump diffusions”, Econometrica, vol. 68, pp. 1343-1376.

[8] Dufresne, D. (2001), “The integrated square-root process”, Working paper, University of
Montreal.

[9] Glasserman, P. (2003), Monte Carlo methods in financial engineering, Springer Verlag, New
York.

[10] Heston, S.L. (1993), “A closed-form solution for options with stochastic volatility with ap-
plications to bond and currency options”, Review of Financial Studies, vol. 6, no. 2, pp.
327-343.

[11] Kahl, C. and P. Jäckel (2006), “Fast strong approximation Monte-Carlo schemes for stochastic
volatility models”, Journal of Quantitative Finance, vol. 6, no. 6, pp. 513-536.

[12] Karlin, S and H. Taylor. (1981), A Second Course in Stochastic Processes, Academic Press.
[13] Kloeden, P. and E. Platen (1999), Numerical solution of stochastic differential equations, 3rd

edition, Springer Verlag, New York.
[14] Lord, R., R. Koekkoek and D. van Dijk (2006), “A Comparison of biased simulation schemes

for stochastic volatility models”, Working Paper, Tinbergen Institute.
[15] Smith, R. (2007), “An almost exact simulation method for the Heston model”, Journal of

Computational Finance, 11 (1), pp. 115-125.

