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Weighted sampling for variance reduction
First version: 1st October 2004
This version: 12th July 2008

Assume we wish to compute the expectation of a binary option by means of a Monte Carlo
simulation with n samples:

E
[
1{z>K}

]
≈ xn (1)

with

xn :=
1

n

n∑
i=1

1{zi>K} . (2)

Assume further that we want z to have the law of a standard normal distribution, and that we
wish to enhance the convergence of our Monte Carlo simulation by sampling from a normal
distribution that is shifted by µ, adjusting for the likelihood ratio:

x̃n :=
1

n

n∑
i=1

1{zi+µ>K}
ϕ(zi + µ)

ϕ(zi)
with zi ∼ N (µ, 1) . (3)

The sum x̃n is a random number with expectation

E[x̃n] = Φ(−K) . (4)

Its second moment is

E
[
x̃2
n

]
=

1

n2
E

( n∑
i=1

1{zi+µ>K}
ϕ(zi + µ)

ϕ(zi)

)2
 (5)

=
n

n2

∞∫
z=K−µ

(
ϕ(z + µ)

ϕ(z)

)2

ϕ(z) dz +
n2 − n
n2

 ∞∫
z=K−µ

(
ϕ(z + µ)

ϕ(z)

)
ϕ(z) dz

2

(6)

=
1

n

∞∫
z=K−µ

e−
1
2
(z+µ)2·2+ 1

2
z2

√
2π

dz +

(
1− 1

n

)
Φ2(−K) (7)

=
1

n
eµ

2 ·
∞∫

z=K−µ

e−
1
2
(z+2µ)2

√
2π

dz +

(
1− 1

n

)
Φ2(−K) (8)

=
1

n
eµ

2

Φ(−K − µ) +

(
1− 1

n

)
Φ2(−K) (9)

The variance of x̃n, i.e.

V[x̃n] =
1

n

(
eµ

2

Φ(−K − µ)− Φ2(−K)
)

(10)

is therefore a function of both µ and K, and we show this in figure 1. In order to minimise the
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Figure 1: The decadic logarithm of normalised variance, i.e. log10

(
n · V[x̃n]/ E[x̃n]2

)
.

variance of the simulation result as a function of the shift parameter µ, we set

∂µV[x̃n] = 0 (11)

which gives us
2µΦ(−K − µ) = ϕ(K + µ) . (12)

The value µ = µ∗(K) that solves (12) minimises the variance of x̃n.
By direct differentiation of equation (12), we can derive that the slope of the optimal curve

µ∗(K) can be expressed as the comparatively simple function

µ∗′(K) =
µ∗(K)(µ∗(K)−K)

1− µ∗(K)(µ∗(K)−K)
. (13)

This result can be used for the construction of an approximation. Choosing α and β such that
the hyperbolic approximation

βK +
√

(1− β)2K2 + α2 (14)
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matches µ∗(K) both in value and in slope at K = 0 leads to

α = µ∗(0) = 0.6120031809624 . . . (15)

β =
α2

1− α2
= 0.5988434439993 . . . (16)

and this approximation is fairly accurate for K ≥ 0. For K < 0, however, the hyperbolic form
is not the most suitable. Instead, the exponential form

αe
β/αK+γK2

(17)

with

γ =
1− 2β

2α2
= −0.2639006805605 . . . (18)

is more appropriate. In total, a reasonable approximation for µ∗(K) is given by:

µ∗approximation(K) =

{
αeβ/αK+γK2 for K < 0

βK +
√

(1− β)2K2 + α2 for K ≥ 0
(19)

The curves µ∗(K) and µ∗approximation(K) are shown in figure 2. The variance reduction factor
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Figure 2: The variance minimising shift µ∗(K) (red solid line) and its hyperbolic approximation µ∗approximation(K)
(green dashed line) and their difference (blue short dashed line).

achieved by the use of the shift µ∗(K) and its approximation µ∗approximation(K) is shown in figure 3.
Note that for K ≈ 31/2, the reduction in variance already exceeds a factor of 103.
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Figure 3: The decadic logarithm of the reduction in variance resulting from the use of the Gaussian shift µ∗(K)
(red solid line) and its approximation µ∗approximation(K) (green dashed line) as a function of the strike K.
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