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Assume we wish to compute the expectation of a binary option by means of a Monte Carlo
simulation with n samples:
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Assume further that we want 2 to have the law of a standard normal distribution, and that we
wish to enhance the convergence of our Monte Carlo simulation by sampling from a normal
distribution that is shifted by u, adjusting for the likelihood ratio:
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The sum z,, is a random number with expectation
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Its second moment is
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The variance of z,,, i.e.
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is therefore a function of both ; and K, and we show this in figure 1. In order to minimise the
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Figure 1: The decadic logarithm of normalised variance, i.e. logy (n - V[z,]/ E[:En]2).

variance of the simulation result as a function of the shift parameter u, we set
oViz, =0 (11)
which gives us
2u®(—K — p) = (K +p) . (12)

The value 1 = p*(K) that solves (12) minimises the variance of Z,,.
By direct differentiation of equation (12), we can derive that the slope of the optimal curve
p*(K) can be expressed as the comparatively simple function
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This result can be used for the construction of an approximation. Choosing « and (3 such that
the hyperbolic approximation
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matches p*(K') both in value and in slope at K = 0 leads to

a = u"(0) = 0.6120031809624 . . . (15)
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and this approximation is fairly accurate for X > 0. For K < 0, however, the hyperbolic form
is not the most suitable. Instead, the exponential form

aeﬂ/aK+’YK2 A7)

with

1-23

202

N = = —0.2639006805605 . . . (18)

is more appropriate. In total, a reasonable approximation for p*(K) is given by:
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The curves p*(K) and g, ....(/) are shown in figure 2. The variance reduction factor
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Figure 2: The variance minimising shift ;*(K) (red solid line) and its hyperbolic approximation j1; . aion (£C)
(green dashed line) and their difference (blue short dashed line).
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achieved by the use of the shift ;*(K') and its approximation % . . (K) is shown in figure 3.
Note that for K & 31/, the reduction in variance already exceeds a factor of 103,
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Figure 3: The decadic logarithm of the reduction in variance resulting from the use of the Gaussian shift ;*(K)
(red solid line) and its approximation 1y .o (/) (green dashed line) as a function of the strike /.



