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Abstract

We discuss the question of weekend and holiday market

volatility in the options markets, its implications for the

temporal interpolation of implied volatility, and the rami-

fications for numerical theta computations for the pur-

pose of commercial P&L explanations. We give a practical

methodology to accommodate these observations and re-

quirements in a derivatives trading environment, and com-

pare what this method implies for the future evolution

of so-called “ON” options in the FX market with actual

market-observed time series of such traded instruments’

Black implied volatilities.

1 Introduction

The Black-Scholes-Merton [BS73; Bla76] forward option

price formula (“BSM” for short), excluding any discount-

ing from the valuation to the payment date, has the form

p = φ · [F · Φ(φ · d1)−K · Φ(φ · d2)] (1.1)

with

φ := ±1 (1.2)

for calls and respectively puts, and

d1,2 := − ln(K/F )

σ̂
√
τ
± σ̂
√
τ

2
(1.3)

where F is the forward1, K the strike, σ̂ the so-called

Black implied volatility, and τ the time to expiry computed

from the calendar day count from the pricing date to the

expiry date, divided by 365. Note that this ACT365 rule

to convert real world dates to the value for τ in the Black-

Scholes-Merton (Black, for short) formula (1.1) has been

in use for some considerable time, is enscribed in some

regulatory (e.g., Basel) framework nomenclature, is often

hard-coded in trading systems, and has been taught so in

many if not all established business and banking courses

at universities and other training institutions worldwide.

It is essentially simply a convention that allows every-

one to know precisely what they are dealing with when
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1i.e., the par strike of a cash-settled forward contract with the

same expiry date

they are given an implied volatility σ̂ without further spe-

cifications, which is of critical importance since the Black

formula invokes the input volatility σ̂ always directly in

combination with
√
τ . An inadvertent consequence to this

convention is that each day is assigned the same amount

of future daily variance of the underlying financial asset’s

future spot realisation.

Unfortunately, this homogeneous flow of time has the

side effect that, for constant σ̂ for options expiring before

and after one specific weekend, the implication is that

the respective option market maker is expecting the same

amount of fluctuations to happen on the Saturday and

Sunday as on the Friday before and the Monday after.

This, alas, does not reflect the real world. A simple yet

effective alternative is to use a different convention for the

calculation of τ in the Black formula, the so-called BUS252

volatility day count convention where we only count act-

ive days of trading and divide them by (an estimate for

the average) number of business days per year. Whilst

this approach is reasonably well known among praction-

ers, it rarely appears in the literature, one exception be-

ing [SV00]. For the respective trading desks, the BUS252

volatility day count convention is pragmatic and easy to

use, though it has its drawbacks.

• First, as mentioned in [SV00], there is:

“[...] the number of trading days is not necessar-

ily proportional to the number of calendar days

left over time, as there are more holidays during

some seasons of the year. Therefore, one should

consider using a different denominator during

different times of the year, at least for pricing

options with time to expiry less than a year.”

• Second, the usage of a different volatility day count

convention to the open market standard entails sig-

nificant operational risk in the interaction with other

departments, trading exchanges, market counter-

parties, and business IT systems.

• Third, in some markets such as FX, option market

makers wish to assign to some business days more

volatility than to any ordinary trading day because

of expected announcements, e.g., monetary decisions,

non-farm pay roll results, and so on.
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In this article, we aim at providing a practically us-

able approach to mark and interpolate implied volatility

(in time) such that low-volatility periods such as weekends

and holidays, as well as higher volatility days (or periods),

are realistically accounted for, and yet we stick with the

conventional ACT365 interpretation of τ in the context of

the Black formula. The core idea is very simple and has

been around for a long time: the passing of calendar time

into the future, in the context of options trading, repres-

ents the arrival rate of (mainly) microscopic market news,

leading to (mainly) microscopic, i.e., diffusively random,

underlying financial asset price movements. On weekends

and holidays, this information rate is drastically reduced,

amounting to a slower flow of market time, which in turn

leads to less variance being attributed to such periods of

time, and vice versa for days of anticipated extra influ-

ential announcements or similar. Whilst this is all very

straightforward, we also discuss the ramifications for the

standard numerical theta calculation, and how this can be

amended in order to obtain a time-decay-of-value measure

that is in line with trading practitioner’s expectations for

P&L explanation purposes. It is this latter part that is

the main focus of this note.

2 Volatility time and Black-Scholes-

Merton variance

Option quotes both on exchanges and the inter-dealer

market via electronic market making data feeds and plat-

forms such as Reuters and Bloomberg typically com-

prise sets of data for a discrete number of expiries, e.g.,

overnight, one week, one month, etc. These quotes may

be for fixed expiry dates (i.e., the expiry date set does not

change from one trading day to the next, with the excep-

tion perhaps of the front quote slipping into the past) as is

usual for exchange-traded options, or given as tenors relat-

ive to the current date, e.g., “ON” representing always an

option to the end of the next business day, “1W”, “1M”,

etc. Either way, in-house, such quotes are usually conver-

ted into some sort of implied volatility surface represent-

ation, calibrated such that the input quotes are perfectly

reproduced, and providing both temporal and strike-wise

interpolation capabilities. In the following, we shall focus

entirely on the temporal interpolation direction and ignore

any strike dependence altogether for the sake of simplicity

of presentation. This is not to say that the interpolation

in the strike direction is of lesser significance. It merely is

not the subject of this article.

Let us denote the set of input quote expiry dates as

T := {T1, T2, ..., Tn}, and the current valuation date as

T0. Associated with these expiry dates, we take as given

a set of “implied” volatilities denoted as {σ̂1, σ̂2, ..., σ̂n}.

We already alluded earlier to the fact that these volat-

ilities can only be unambiguously converted into option

prices if we have a clear definition as to the meaning of

the time variable in the BSM formula (1.1). Hence, for

this purpose, we consider as given also a volatility time

function

τ (Ta, Tb)

that converts the span between any two calendar dates Ta
and Tb into a time quantity that can be used in the BSM

formula. To put it differently, we state that any volatility

σ̂(T ) for expiry T corresponds to a T -forward option price

out of the valuation date T0 by the aid of the Black (or

BSM-) variance

v̂(T ) := σ̂(T )2 · τ (T0, T ) (2.1)

via formula (1.1) with

d1,2 := − ln(K/F )√
v̂

±
√
v̂

2
. (2.2)

3 Time-weighted volatility

Given a set of input quotes as described in the previous

section, and obviously in ignorance of any strike depend-

ency as we shall allow ourselves for the purpose of this

article, the primary purpose of the volatility surface is to

enable us to obtain option prices for any intermediate ex-

piry dates not present in the input calibration set. This

can in principle be done with any monotonicity preserving

interpolation method on Black variance over expiries. For

the purpose of our current context, however, we prefer

to use the simple approach of linear interpolation in vari-

ance. In other words, for an input expiry date T that is

not exactly one of our surface’s calibration expiry set T
(else we obviously just use the volatility for the quoted

expiry), we find the bracketing expiries Ti−1, and Ti such

that Ti−1 < T < Ti and set

v̂(T ) := v̂i−1 · (1− w) + v̂i · w (3.1)

with

v̂i := σ̂2i · τ (T0, Ti) ∀ i = 1..n. (3.2)

for a suitably computed interpolation coefficient w whose

specifics will be discussed imminently. In the case that

T < T1, we set i := 1, and for T > Tn, we set i := n,

but in both cases we use T0 instead of Ti−1 (and thus use

0 instead of v̂i−1), which renders the first term on the

right hand side of (3.1) as identically zero. In order to

be arbitrage-free and consistent at either end Ti−1 and Ti,

the interpolation coefficient w = w(T ) must rise mono-

tonically from 0 at T = Ti−1 to 1 at T = Ti.

For the purpose of time-varying attribution of variance

over all the calendar days from Ti−1 to Ti, according

2
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to each day’s trading significance, we allow for a time-

weighting (or time measure) function

ω(Ta, Tb).

A practical implementation of such a function is simply

an iterative loop over all days in the interval summing

up 1 for each ordinary business day, a chosen weight wW

assigned to weeekend days for each day on a weekend, a

chosen weight wH for each bank holiday (in practice we

often use wW ≡ wH as some very small but positive num-

ber such as 10−6), and a number wE larger than 1 for

each day of anticipated extra trading activity (which ad-

dresses the third of the criticsms of the BUS252 day count

convention in section 1), but more refined choices are of

course equally possible where warranted by the respective

trading environment. With this, we then use the simple

formula

w(T ) :=
ω(Ti−1, T )

ω(Ti−1, Ti)
(3.3)

and apply it in (3.1) to obtain time-weighted volatility

interpolation.

Remark 3.1. Note that the formulation (3.3) obviates

any kind of normalisation of the time-interval weighting

function ω(·, ·). Also note that the definition of w(T ) as

a ratio of time-interval weights immediately addresses the

first of the three criticisms of the simple BUS252 day count

(volatility time) convention in the introduction as quoted

from [SV00].

Remark 3.2. The conventional case of standard linear

variance interpolation without explicit time-weighting is

resumed in this setting by defining the time-weighting

function ω(·, ·) to be identical to the volatility time func-

tion τ (·, ·), i.e., when

ω(·, ·) ≡ τ (·, ·) .

Note that this is not necessarily the same as the simple

day weight summation rule for ω(Ta, Ta) with wW ≡ wH ≡
wE ≡ 1 since the volatility time function τ (·, ·) may have

been specified originally as a BUS252 rule. However, in

order to address the second of the three criticisms of the

BUS252 convention in section 1, we obviously wish to use

the standard ACT365 day count convention for τ (Ta, Tb)

whenever we have expressly given time weight coefficients.

All in all, our time-weighted temporal interpolation rule

for implied volatility is

σ̂(T ) =
√
σ̂2i−1 ·

τ (T0,Ti−1)
τ (T0,T )

ω(T,Ti)
ω(Ti−1,Ti)

+ σ̂2i ·
τ (T0,Ti)
τ (T0,T )

ω(Ti−1,T )
ω(Ti−1,Ti)

(3.4)

for T1 < T < Tn, where we have used the additivity rela-

tionship

ω(Ti−1, Ti) = ω(Ti−1, T ) + ω(T, Ti) (3.5)

which hopefully holds for ω(·, ·), and

σ̂(T ) = σ̂i ·

√
τ (T0, Ti)

τ (T0, T )
· ω(T0, T )

ω(T0, Ti)
(3.6)

for T < T1 (i=1) or T > Tn (i=n).

Remark 3.3. We see from (3.6) that without explicit

time-weighting, i.e., when we set

ω(·, ·) ≡ τ (·, ·) ,

we simply obtain flat extrapolation at the front and at

the back of our quote set, which is arguably simplistic yet

perfectly pragmatic in a trading and hedging environment.

We show in figures 1 and 2 examples for the term struc-

tures of implied volatility over subsequent business days

as expiries generated by the methodology discussed in this

section. Note that the BUS252 “quotes” were generated

by multiplying the corresponding ACT365 quotes by√
τACT365(T0, Ti)

τBUS252(T0, Ti)
.

Also, we should mention that in the absence of any spe-

cial day add-on weights, and for holiday and weekend

weights being zero, such that the time-weighting func-

tion ω(·, ·) becomes the same as the business day count

used in BUS252, the shown data for “BUS252” and for

“ACT365 with time weights” in the two graphs corres-

pond to identical option prices on all dates, not only on

quoted expiries (which are always calibrated to exactly by

all methods).

4 Theta

A common bone of contention between the various depart-

ments of any investment bank is the meaning, definition,

and purpose of the so-called theta, i.e., the theoretically

predicted time-decay of the value of any option. It is,

at least philosophically, arguable whether such a quantity

should be referred to in one and the same context as mar-

ket risk measures since the progression of time is without

doubt one of the few things that can be relied on with cer-

tainty, i.e., without any risk whatsoever. However, since

the dynamic replication of any derivative’s payoff is a bal-

ancing act between the net proceeds from the trading of

the respective hedge instruments and the derivative’s net-

present-value intrinsic time-decay, it is clearly of interest

3
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ATM volatility term structure [front end, extrapolation before first quote pillar at 2020-03-27]
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Figure 1: Implied volatilities as generated by inter- and extrapolation for short maturities.
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ATM volatility term structure [back end, extrapolation beyond 2024-12-27 ]

BUS252 Quote BUS252 ACT365 Quote Standard ACT365 ACT365 with time weights

Figure 2: Implied volatilities as generated by inter- and extrapolation for long maturities.

to have a sensible measure of the amount of value decay

that has to be made up by the frequent buying and selling

of the hedges.

Probably the most widespread approach for a numerical

(forward looking) theta computation of any vanilla option

book is to take the entire market data set for any given

valuation date T0 and shift it to the following business day,

here denoted as T ′0, reprice all positions, and subtract the

values of the same positions as already computed for T0.

For volatility surfaces, the standard practice seems to be

to keep all volatilities for quoted expiries unchanged in the

shift from T0 to T ′0, even when these expiries are given as

fixed dates, as opposed to as periods, which we shall as-

sume from here on. And this is where the simple BUS252

volatility day count convention shows its most popular fea-

ture that gave rise to it being favoured by many traders

who wish to see if their day-to-day (note: business days!)

delta-hedging of the option’s gamma breaks even against

the time decay (theta) of the position. In most finan-

cial markets, e.g., equity, FX, commodity, interest rates,

historically, by far the most activity in price movements

is observable during business days, and so the hedging

practitioner prefers to see only one (business) day of time

decay from a Friday to a Monday, just as they see from a

regular Thursday to the subsequent Friday. Alas, when a

volatility surface is configured simply with respect to the

4
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standard ACT365 volatility day count convention, and

volatility quotes on the surface are kept constant when

we shift T0 → T ′0 from a Friday to a Monday, any exist-

ing option position is revalued for T ′0 with a time number

going into the Black formula that has been reduced by a

full three days. This leads to the so-computed numerical

theta being about three times2 as large as is likely to be

made up by delta-hedging during the business hours of

the Monday, which is only one business day. Whilst this

may balance out over the course of the week, or multiple

weeks, it is understandably a nuisance for the hedger, and

hence traders prefer a different time decay measure.

Let us assume, at least initially, that the next business

date T ′0 succeding our original valuation date T0 is still be-

fore the first quote pillar date T1, i.e., T0 < T ′0 < T1, and

recall the definition (3.2) of the Black variances v̂i associ-

ated with the surface’s quote expiry dates. The purpose of

the time weighting function ω(·, ·) is to distribute the vari-

ance between T0 and T1 with respect to any intermediate

date T ∗ (such that T0 < T ∗ < T1) according to:-

(1− w1) · v̂1 for the time span from T0 to T ∗

w1 · v̂1 for the time span from T ∗ to T1
(4.1)

with

w1 :=
ω(T ∗, T1)

ω(T0, T1)
. (4.2)

We now choose T ∗ := T ′0, and desire that the first quo-

tation expiry (T1) variance after the valuation date shift

T0 → T ′0 should satisfy

v̂′1 = w1 · v̂1 (4.3)

in accordance with the original idea of the variance distri-

bution as governed by the time weighting function ω(·, ·).
This gives us

σ̂′1
2 · τ (T ′0, T1) =

ω(T ′0, T1)

ω(T0, T1)
· σ̂1 2 · τ (T0, T1) (4.4)

as the equation to define the volatility σ̂′1 for expiry T1 on

the 1-business-day-forward-propagated volatility surface.

In total, we obtain

σ̂′1 = σ̂1 ·

√
ω(T ′0, T1)

ω(T0, T1)
· τ (T0, T1)

τ (T ′0, T1)
(4.5)

as the volatility quotation slice update rule required for

the front slice (for expiry T1) to be consistent with the

concept of variance attribution according to the given

2Due to the fact that vanilla option prices are a concave function
(proportional to the square root) of time to expiry, the numerical
three-calendar-day theta will always be strictly more than a factor
three of that of a one-calendar-day theta, with that factor even di-
verging as we approach the option’s expiry.

time weighting function, and thus to give a profit-and-

loss explanation (i.e., theta computation) in line with the

respective holiday and weekend weighting.

Remark 4.1. Note that in the special case of ω(·, ·) ≡
τ (·, ·), the square root term in (4.5) cancels out identically

and we simply obtain σ̂′1 = σ̂1, i.e., quote invariance

under the valuation date shift T0 → T ′0.

In order to meet all of the following requirements:-

• in the absence of any time weighting, i.e., in the con-

ventional standard case which is equivalent to the

default choice ω(·, ·) ≡ τ (·, ·), the volatility surface

keeps all quotes invariant under the valuation date

shift T0 → T ′0,

• the volatility surface behaves with respect to

profit-and-loss explanation (i.e., theta computations)

equally when

a) it is configured without time weights but τ (·, ·)
is defined via BUS252 and

b) it is configured with zero weekend and holiday

weights and τ (·, ·) via ACT365,

we ask that the translation rule

v̂′i =
ω(T ′0, Ti)

ω(T0, Ti)
· v̂i (4.6)

holds not only for i = 1, but for all i. This means, when

the volatility surface is shifted forward one (or multiple)

business days, apart from that we drop all front quotation

slices that thereby slip into the future past, we update all

volatilities according to the theta mutation logic

σ̂′i = σ̂i ·

√
ω(T ′0, Ti)

ω(T0, Ti)
· τ (T0, Ti)

τ (T ′0, Ti)
. (4.7)

To demonstrate the efficacy of the above logic for volat-

ility surfaces, we show in figure 3 the 1-business-day for-

ward looking numerical theta of an ATM vanilla option

during the last 30 business days of its life, as a func-

tion of business-days-left to expiry. The actual real-world

time span comprised 44 calendar days. For the standard

ACT365 volatility day count convention setting, we can

clearly see the approximately 3 times larger magnitude

of theta about once every 5 business days correspond-

ing to Fridays, and one exceptionally large theta burst

at t = 4-days-to-expiry of a factor somewhat larger than

5 which corresponds to the Thursday before Easter in

2020. This is because in the respectively applicable busi-

ness calendar (TARGET) there is a 5 calendar day span

from the last business day before Easter (Thursday) to

the next after Easter (Tuesday). In contrast, we obtain
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Figure 3: 1-business-day forward looking numerical theta of an ATM vanilla option.

identical output from the BUS252 method and from the

ACT365 method with time weights configured to emu-

late simple business day counting (no special announce-

ment day weights, weekends and holidays both effectively

zero-weighted). We mention that the small kink at t =

13-days-to-expiry for “BUS252” and “ACT365 with time

weights” is due to a quote expiry on the surface slipping

into the past. Since the chosen option’s expiry date is not

equal to any of the quoted expiries on the surface, this

transition changes how the option’s volatility is retrieved

from the surface: up until 14 business days before expiry,

it is interpolated over the two front quote expiries on the

surface, but therafter, it is computed only from the front

quote.

5 “ON” FX volatility time series

In the FX market, short-dated so-called overnight (“ON”)

options are traded anew on every business day. Each of

these contracts starts trading in the morning of the busi-

ness day in London, with expiry being the close of busi-

ness the next day in New York. As usual, when prices

are shown as volatilities, these are quoted in terms of the

standard ACT365 time-to-expiry rule. Thus, even though

they trade, in total, for two full business days (or arguably

even a little bit more), on their first day of trading, the

Black volatility is to be used with just one calendar day

of time to expiry. It is also possible, however, that the

next business day is one or several calendar days further

away due to weekends or bank holidays, resulting in some

interesting effects for the intra-day time series of these

“ON” contracts’ Black volatility. We show such a time

series in figure 4 for EURUSD “ON” options from May

2020. Note that the seemingly continuous curve can be

somewhat misleading to the uninitiated. First, pay atten-

tion to the fact that the enumeration along the abscissa

only shows business days, and hence the curve even jumps

through entire weekends. Second, be aware that the time

series switches every morning to the next contract, which

accounts for the sudden upwards jump at the beginning of

each trading day. Further, we now discuss two very spe-

cific peculiarities that are a consequence of the ACT365

time convention in use with the Black formula.

1. Consider the relatively stationary volatility period of

Tuesday the 12th to Wednesday the 13th of May in

figure 4. On each of these mornings, the new option

contract opened with about 9.7% of Black volatil-

ity. By the end of each of these business days, how-

ever, the implied Black volatility of the very same

contract had gone down to about 6.8%. Why would

that be? It turns out that the market’s perceived in-

stantaneous volatility had not changed at all! The

FX options market, trading down to the minute as it

does, trades these options as if they have a total life

span of almost two real-world trading days. Thus,

they open up with an associated Black variance (to

the contract’s expiry) that is about twice of what is

left at the end of the first of its two trading sessions.

Thus, to accommodate a decay of the Black variance

σ̂2 ·τ (with τ = 1/365 fixed throughout the whole first

trading day!) of a factor of 2 from the start of the

day when the options starts being quoted to the end

of that day, the volatility must come down by about

1/
√

2 since then
(
σ̂/
√

2
)2 · τ = σ̂2 · τ/2. And lo and
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Figure 4: EURUSD “ON” option volatility time series Bloomberg screenshot from May 2020.

behold:

9.7%/6.8% ≈
√

2 .

2. Even more intriguing is the weekend effect on Fri-

day mornings: the new contract with 1B expiry

now trades until Monday evening, and is accordingly

quoted with a Black time-to-maturity of τ = 3/365.

The market, however, assigns little variability to

the weekend, and prices it with approximately the

same amount of market variance as if there was no

weekend in the middle of the life of the Friday-to-

Monday contract. Take the example of the Friday-to-

Monday contract that started trading in the morn-

ing of 22nd of May in figure 4. Assume that the

market assigned to it about the same Black variance

at its start of trading as the preceding Thursday-to-

Friday contract (which was about σ̂ = 10.2% with

τ = 1/365). Denote the Friday-to-Monday time-to-

expiry as τ ′ = 3/365 and its Black formula volatility

as σ̂′. Thus, we want to have

σ̂2 · τ ≈ σ̂′2 · τ ′ .

We substitute τ = 1/365 and τ ′ = 3/365 and obtain

σ̂′ ≈ σ̂/
√

3

which agrees well with 5.9% ≈ 10.2%/
√

3 !

Whilst we do not want to go into the fine details of the

intra-day value decay of any one option contract, it is re-

assuring to know that the time-weighted implied volatility

interpolation of section 3 realistically emulates the second

of the above mentioned observations. This is shown in

figure 5 where we used one volatility surface (originally

for the 4th of March 2020, for a European stock with the

TARGET business calendar) to generate a virtual “ON”

(daily) volatility time series by shifting the surface to a

whole sequence of forward dates (using the theta mutation

logic presented in section 4, though that’s less important

here), and from each such forward surface read out the 1-

business-day-expiry ATM volatility. We can clearly see in

the “ACT365 with time weights” series the Thursday-to-

Friday drop, and from the numbers we can confirm that

it is by exactly a factor of 1/
√

3 on all regular such days.

There are two exceptions, the first being the 27th of March

where we have the front quote expiry on the surface slip-

ping into the past, and we incur a jump to the next front

quote. The second exception is from Wednesday the 8th of

April to the Thursday before Easter, where we can meas-

ure a drop of exactly a factor of 1/
√

5 , just as we would

want it.

Happy days!
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Figure 5: A virtual 1-business-day (“ON”) volatility time series for subsequent calendar days. The “ACT365 with time weights” data set
was generated by the time-weighted theta mutation logic of section 4 and the time-weighted volatility interpolation of section 3.

Acknowledgement

The author is grateful to Charles-Henri Roubinet, Head

of Quantitative Research at VTB Capital, for authorizing

the release of this material into the public domain.

Further, I would like to thank my former colleague

Manuel Abellan-Lopez for his original work on the time-

weighting implementation, and for useful comments and

suggestions on this article.

References

[Bla76] F. Black. ‘The pricing of commodity contracts’. In:
Journal of Financial Economics 3 (1976), pp. 167–179.

[BS73] F. Black and M. Scholes. ‘The Pricing of Options and Cor-
porate Liabilities’. In: Journal of Political Economy 81
(1973), pp. 637–654.

[For98] P. Fortune. Weekends Can Be Rough: Revisiting the Week-
end Effect in Stock Prices. Tech. rep. www.bostonfed.
org/-/media/Documents/Workingpapers/PDF/wp98_6.

pdf. Federal Reserve Bank of Boston, 1998.

[GK83] M. B. Garman and S. W. Kohlhagen. ‘Foreign Currency
Option Values’. In: Journal of International Money and
Finance 2 (Dec. 1983), pp. 231–237.

[Mer73] R. C. Merton. ‘Theory of Rational Option Pricing’. In: Bell
Journal of Economics and Management Science 4 (Spring
1973), pp. 141–183.

[SV00] K. Sundkvist and M. Vikström. Intraday and weekend
volatility patterns - Implications for option pricing. Tech.
rep. helda.helsinki.fi/dhanken/bitstream/handle/
10227/153/453-951-555-680-5.pdf. Swedish School of
Economics and Business Administration, 2000.

8

www.bostonfed.org/-/media/Documents/Workingpapers/PDF/wp98_6.pdf
www.bostonfed.org/-/media/Documents/Workingpapers/PDF/wp98_6.pdf
www.bostonfed.org/-/media/Documents/Workingpapers/PDF/wp98_6.pdf
helda.helsinki.fi/dhanken/bitstream/handle/10227/153/453-951-555-680-5.pdf
helda.helsinki.fi/dhanken/bitstream/handle/10227/153/453-951-555-680-5.pdf

	Introduction
	Volatility time and Black-Scholes-Merton variance
	Time-weighted volatility
	Theta
	``ON'' FX volatility time series
	References

