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Abstract

Ad-hoc correlation matrices, those calculated from incomplete data, and those taken from

news services sometimes don’t comply with the requirement of symmetry and positive semi-

definiteness. Whilst it is easy to amend the symmetry requirement by manual intervention,

it is not always straightforward to see how to adjust the given correlation matrix to become

usable for factor analysis or simulation purposes. In this document, two methods are de-

scribed that can be used to best-match an invalid correlation matrix given the constraint of

positive-semidefiniteness.

1 Introduction and motivation

The problem of how to specify a correlation matrix occurs in several important areas of finance

and of risk management. A few of the important applications are, for instance, the specification of

a (possibly time-dependent) instantaneous correlation matrix in the context of the BGM interest-

rate option models, stress-testing and scenario analysis for market risk management purposes, or

the specification of a correlation matrix amongst a large number of obligors for credit-derivative

pricing or credit risk management.
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For those applications where the most important desideratum is the recovery of the real-world

correlation matrix, the problem is in principle well defined and readily solvable by means of well-

established statistical techniques. In practice, however, the estimation problems can be severe: a

small number of outliers, for instance, can seriously “pollute” a sample; non-synchronous data

can easily destroy or hide correlation patterns; and the discontinuities in the correlation surface

amongst forward rates when moving from deposit rates to the future strip, and from the latter to

the swap market are well known to practitioners. In all these cases, the user often resorts to best-

fitting the “noisy” elements of the sample correlation matrix by means of a plausible parametric

function. This is, for instance, the route taken by Rebonato [9] for his calibration of the BGM

model.

Similarly, when faced with the problem of pricing credit derivatives such as, for instance,

nth-to-default credit swaps, practitioners often posit or adjust (rather than simply estimate) a

correlation matrix between intuitively understandable factors, such as country, industrial sector,

etc.

Even when the correlation matrix econometrically estimated is thought to be reliable, a risk

manager often wants to alter it in an ad hoc fashion, either as a stress test or in the context of

scenario analysis. It is well known, for instance, that, in the event of equity market crashes, the

correlation between different equity markets can dramatically increase (see Boyer et al. [1]).

A risk manager in charge of a portfolio made up of, say, several national equity indices would

greatly overestimate the degree of diversification in his portfolio in the event of a crash if he used

the matrix estimated during “normal” periods.

Another important situation where straightforward econometric estimation of a correlation

matrix is not possible is the case of legacy currencies (such as French Franc, the Lira, etc., which

have all been subsumed in the Euro). To tackle this problem both the option pricer and the risk

manager have to invent, on the basis of financial intuition, a correlation matrix for a currency for

which no history exists.

Finally, and perhaps most importantly, statistical estimation techniques based on the analysis
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of historical data are intrinsically ill suited to provide predictions of future quantities when a

paradigm shift has taken place. Such a paradigm shift could be, for instance, the imposition

of currency controls for an emerging market, the granting of independence of a central Bank,

a financial crisis such as Russia’s default in 1998, etc. In all these cases, it is to some extent

possible to glimpse, from the traded prices of options, forward-looking estimates of volatilities

that can supplement or replace the intrinsically backward-looking econometric estimates. The

information available in derivative products about the future correlation matrix is, however, far

too convoluted1 to be of practical use. Whenever one therefore believed that the past might not

be a reliable guide to the future, one could not realistically hope to distil a market consensus

about the future correlation from the options market, and one would have to resort to altering an

estimated matrix on the basis of financial intuition.

What all these different situations (and many more) have in common is therefore the desirab-

ility of altering a given correlation matrix deemed, for any reason, inadequate or inappropriate

or of creating tout court a new one. The task, unfortunately, is not as simple as it might seem,

given the requirement of a correlation matrix to be not only real symmetric, but also positive-

semidefinite. This requirement, it must be stressed, does not belong to the “nice-to-have” list,

but is an absolute requirement: if it were not fulfilled, for instance, a risk manager would have no

guarantee that his VaR calculation, carried out using a variance-covariance normal approximation

according to

VaR = k · aT ·C · a (1)

will yield a positive number. In equation (1) above, a is the vector of portfolio sensitivities to

the market factors whose covariance matrix is denoted by C and the constant k depends on the

1The most promising area might appear to be the caplet/swaption markets. Rebonato [7, 8, 9] however shows

that, in the absence of serial options, it is impossible to pin down uniquely from the prices of traded options both the

time-dependent volatility of the forward rates and the correlation matrix amongst them. Furthermore, even if one

assumed perfect knowledge of the instantaneous volatility functions for all the forward rates, swaption prices have

very poor discriminatory power with respect to different correlation matrices, because they depend more strongly

on the functional form of the instantaneous volatilities.
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required percentile. Whilst the guarantee of the VaR as given by equation (1) being non-negative

is usually not sufficient for it to be a meaningful risk measure2, it is strictly necessary to make

any kind of simulation possible when correlation between underlying assets is to be taken into

account.

In practice, the problem of an invalid correlation matrix, i.e. one that has negative eigenval-

ues, can also very easily arise in the context of risk analysis for equity portfolios. This is because

there are frequently asynchronous gaps in the historical stock exchange time series. The chance

that slight inconsistencies in the data from which historical correlation coefficients are calculated

can lead to negative eigenvalues grows rapidly as the size of the correlation matrix increases.

This has recently been pointed out by Ju and Pearson [11]. Intuitively, it can be understood to

be an effect of the characteristic polynomial that determines the eigenvalues becoming of higher

order as the dimension of the correlation matrix grows, and thus displaying a stronger nonlinear

response to slight changes in the polynomial’s coefficients. Since equity index or portfolio ana-

lysis typically involves many underlying assets, the risk of negative eigenvalues of the correlation

matrix calculated from historical data is particularly large.

The problem of how to specify a valid correlation matrix has been recognized in the literature

and several papers have appeared on the subject (see, e.g. Kupiec [5], Finger [4], Brooks et al.

[2]). The solutions proposed so far, however, have been only partial answers. The technique pro-

posed by Finger, for instance, is designed to increase portions of the correlation matrix. Finger’s

approach (also reported in Brooks et al. [2]) has the drawback that some portions of the correla-

tion matrix are altered in the desired fashion, but, in order to retain positive-semidefiniteness, the

slack is taken up by other portions of the matrix in an uncontrolled fashion. The problems with

2The VaR can in principle be zero due to a non-vanishing kernel of the correlation matrix C. In this case, a trader

or fund manager can in theory construct, by optimisation over the constituents, an apparently risk-free portfolio, i.e.

a portfolio with zero Value at Risk. This fundamental shortcoming is not handled by the method proposed in this

article. In order to reduce the risk of traders “arbitraging” a VaR measure by means of a perverse optimisation, it is

rather recommendable to use one of the class of coherent risk measures [3] such as expected Value at Risk which is

given by the conditional average over the tail of the profit & loss distribution beyond the required percentile.
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this approach is clearly presented by Brooks et al.:

“...It [Finger’s] is not a simple procedure in practice, and represents the main draw-

back in J.P. Morgan’s approach [i.e. RiskMetrics] ... Note also that the other correl-

ations in the matrix (that we had no a priori view on) have also changed, but this is

the price that must be paid to ensure a consistent revised correlations matrix.”

The shrinkage technique (Kupiec [5]) is different in spirit and definitely more general. It pro-

ceeds by iterating towards a feasible solution that modifies as much as possible (in a non-easily

quantifiable sense) a pre-existing well defined positive-semidefinite matrix towards a desired tar-

get correlation matrix. Despite its appeal and greater generality, its main drawbacks are that it

can be rather time consuming (since it requires a full matrix orthogonalisation at each iteration);

that it requires as a starting point and “anchor” a positive-semidefinite matrix to start with; and

that, above all, there is no way of determining to what extent the resulting matrix is optimal in

any easily quantifiable sense.

In order to obviate these shortcoming we present a method which:-

i) is guaranteed to produce a positive-semidefinite matrix;

ii) does not require a pre-existing acceptable matrix to start with;

iii) is fast to implement even for large matrices;

iv) allows the determination of a feasible matrix that most closely approximates a target real

symmetric (but not positive-semidefinite) matrix in a well defined and quantifiable sense.

As for the last property of the method here presented, the user is at liberty to specify a suitable

metric under which the technique is guaranteed to yield the best possible answer.

Furthermore, we present a second, and even faster, method, which shares properties i), ii) and

iii) above, but which is not guaranteed to enjoy property iv)3. In all the empirical studies we have
3More precisely, there probably exists a metric with respect to which this method does provide the optimal

solution but we have not been able to identify it.
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carried out, however, the results obtained using this second approach have been extremely close,

albeit not identical, to the ones obtained using the first technique. After presenting the main

method, we therefore propose that the latter can be used either as an excellent fast approximation

to the solution obtained using what is probably the most intuitive metric or as an initial guess for

the general problem.

2 Hypersphere decomposition

The starting point are the well known results from linear algebra that every n × n matrix M

given by

M = WW T (2)

for any W ∈ Rn×n is positive-semidefinite and that, conversely, every positive-semidefinite

matrix M ∈ Rn×n can be decomposed as in equation (2).

The method we propose for the construction of a valid correlation matrix

Ĉ = BBT (3)

that best-matches a given, not positive-semidefinite, target matrix C is to view the elements of

the row vectors of matrix B in equation (3) as coordinates lying on a unit hypersphere [8, 9, 10].

If we denote by bij the elements of the matrix B, the key is to obtain the n × n coordinates bij

from n× (n− 1) angular coordinates θij according to

bij = cos θij ·
j−1∏
k=1

sin θik for j = 1 .. n− 1

and (4)

bij =

j−1∏
k=1

sin θik for j = n .

For an arbitrary set of angles {θij}, a matrix Ĉ formed from B as in equation (3) satisfies all

the given constraints required of a correlation matrix by construction. In particular, thanks to

the trigonometric relationship (4) and to the requirement that the radius of the unit hypersphere
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should be equal to one, the main diagonal elements are guaranteed to be unity, see appendix A

for a proof.

In general, matrix Ĉ will bear no resemblance to the target matrix C. However, after using

the above transformation and after defining a suitable error measure ε in the resulting approxim-

ate correlation matrix Ĉ

ε =
∣∣∣∣∣∣C − Ĉ

∣∣∣∣∣∣ , (5)

one can use an optimisation procedure over the angles θij to find the best possible fit given the

chosen error measure. Sensible choices for the error measure are:-

• The sum of squares of the elements of the difference matrix
(
C − Ĉ

)
,

χ2
Elements :=

∑
ij

(cij − ĉij)2 . (6)

Since both C and Ĉ have unit diagonal elements, this error norm is equal to twice the sum

of squares of errors in the free correlation coefficients.

• The elementwise sum of squares of errors in the sorted sets of eigenvalues of C and Ĉ,

χ2
Eigenvalues :=

∑
i

(
λi − λ̂i

)2
. (7)

Naturally, the above suggestions are only examples and various other choices are conceivable. If,

in particular, a risk manager felt that certain portions of the target correlation matrix C should be

recovered with particularly high accuracy, then correspondingly large weights could be assigned

to the relative elements (cij − ĉij)2. In this context, the error norm given by equation (6), where

every element has exactly the same weight, has been shown by Rebonato [8, 9, 10] to have

desirable global features in so far as the calibration of the BGM model is concerned.

The fundamental benefits of this method are twofold: first, when the underlying space over

which the optimisation is carried out is expressed in terms of angle vectors describing coordinates

on a unit hypersphere, no constraints have to be satisfied. This can be of substantial benefit for

the numerical fitting procedure. More importantly, despite the fact that the procedure is still
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iterative, unlike the shrinking method [5], it simply requires a matrix multiplication per iteration,

rather than a full matrix diagonalisation4. This can make a big difference, especially for large

matrices. Furthermore, the approach presented in the next section requires no iterations and

provides a solution very similar to the one obtained using error metric (6). It can therefore be

used to provide the starting point for the search procedure, thereby further reducing the overall

computational cost.

3 Spectral decomposition5

Given the right-hand-side eigensystem S of the real and symmetric matrix C and its associated

set of eigenvalues {λi} such that

C · S = Λ · S with Λ = diag (λi) , (8)

define the non-zero elements of the diagonal matrix Λ′ as

Λ′ : λ′i =

 λi : λi ≥ 0

0 : λi < 0 .
(9)

If the target matrix C is not positive-semidefinite, it has at least one negative eigenvalue and at

least one of the λ′i will be zero.

Also, define the non-zero elements of the diagonal scaling matrix T with respect to the ei-

gensystem S by

T : ti =

[∑
m

s2imλ
′
m

]−1
. (10)

Now, let6

B′ := S
√
Λ′ (11)

4It should be noted that for most optimisation procedures, the function defining the error norm has to be evaluated

many times per iteration since typically some kind of Hessian or Jacobian matrix is also needed. Thus, the reduction

in computational effort at this level can be crucial.
5also known as principal component analysis
6Please note that the notation

√
D for a diagonal matrix D with non-negative elements is a symbolic description

of the diagonal matrix whose non-zero elements are the positive roots of the diagonal elements of D.
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and

B :=
√
TB′ =

√
TS
√
Λ′ . (12)

For normalised row vectors of S, the truncation of the negative eigenvalues results in row vectors

of B′ that are not of unit length. This is rectified in equation (12) by the aid of matrix T which

contains the required normalisation factors. By construction,

Ĉ := BBT (13)

is now both positive-semidefinite and has unit diagonal elements since its elements are

ĉij =
∑
klmnp

(
√
T )ik · skl · (

√
Λ′)lm · (

√
Λ′)mn · spn · (

√
T )pj

=
∑
l

√
ti · sil · λ′l · sjl ·

√
tj

=

∑
l

silsjlλ
′
l√∑

m

s2imλ
′
m ·
∑
k

s2jkλ
′
k

. (14)

A procedural description of the above method may clarify what actually has to be done:

· Calculate the eigenvalues λi and the right-hand-side eigenvectors si of C.

· Set all negative λi to zero.

· Multiply the vectors si with their associated “corrected” eigenvalues λ′i and arrange as the

columns of B′.

· Finally, B results from B′ by normalising the row vectors of B′ to unit length.

By following this procedure we obtain an acceptable correlation matrix which is intuitively “sim-

ilar” to the target one (the more so, the fewer the eigenvalues which have to be set to zero). The

crucial point, however, is not so much the plausibility of the metric but the fact that empirically

we have always observed the results obtained using equations (8) to (13) to be very similar to

those from the angular method discussed in section 2. How close the results are in practice is

shown in the next section. This is significant because one can use the result of the method de-

scribed here either as an accurate approximation to the best (in a χ2
Elements sense) solution, or as
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the starting point for the optimisation discussed in section 2, thereby substantially reducing the

computational burden of the hypersphere decomposition approach.

4 Examples

A risk manager retrieves from the middle office’s reporting system the following correlation

matrix of three world equity indices:

C̃ =


1 0.9 0.7

0.9 1 0.4

0.7 0.4 1

 .

The eigenvalues of C̃ are { 2.35364, 0.616017, 0.0303474 } and the correlation matrix can

be split up as in

C̃ = B̃B̃
T

with

B̃ =


0.98742 0.08718 −0.13192

0.88465 0.45536 0.10021

0.77203 −0.63329 0.05389

 .

The risk manager is aware of the Value at Risk calculated under the assumption of this cor-

relation between the three indices. In order to assess the change in Value at Risk resulting from

a decrease in correlation between two of the three underlying variables, the risk manager wishes

to adjust the matrix to

C =


1 0.9 0.7

0.9 1 0.3

0.7 0.3 1

 .

Unfortunately, the eigenvalues of C ′ are now { 2.29673, 0.710625,−0.00735244 }, and des-

pite its plausible appearance, matrix C ′ is no longer an acceptable correlation matrix. This

highlights how a minor change can lead to the violation of the requirement of positive-semi-

definiteness of a correlation matrix. The system will now fail when trying to construct a split-up
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matrix B for the purpose of Monte Carlo simulations7 in order to calculate the Value at Risk

under the new assumptions.

Using the method outlined in section 2 with the error measure chosen to be χ2
Elements as given

by equation (6), we can calculate

B̂ =


0.99804 0.06265 0

0.86482 0.50209 0

0.74020 −0.67239 0


with

Ĉ = B̂B̂
T
=


1 0.89458 0.69662

0.89458 1 0.30254

0.69662 0.30254 1


and a total error of χ2

Elements = 0.946 · 10−4.

In comparison, the method outlined in section 3 above, yields

B̂ =


0.99805 0.06238 0

0.86434 0.50292 0

0.73974 −0.67290 0


to give us

Ĉ = B̂B̂
T
=


1 0.89402 0.69632

0.89402 1 0.30100

0.69632 0.30100 1

 .

Not only is the total error only χ2
Elements = 1.0 · 10−4 but also the individual elements are remark-

ably close to the values obtained by optimisation. Despite the fact that there is in general no

guarantee that the results of the two methods are as close together as in this example, we have

always found very good agreement between the two approaches.

7The construction of correlated normal variates from a vector of uncorrelated normal variates z is done by the

transformation x = B · z with C = BBT .
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5 Conclusion

We have presented two simple methods to produce a feasible (i.e. real, symmetric, and positive-

semidefinite) correlation matrix when the econometric one is either noisy, unavailable, or in-

appropriate. The first method is to the knowledge of the authors more general than any of the

approaches which have been proposed in the literature, and computationally faster. It can actu-

ally produce the optimal feasible solution in a sense specified by the user. The second method is,

in principle, not as general, but we show that i) it is extremely fast and ii) it produces results very

close to those obtained using the general procedure. It can therefore be used in its own right, or

as a starting point for the general optimisation procedure, thereby making the latter even faster.

A Angular coordinates on a hypersphere of unit radius

The i-th row vector of B as specified by equation (4) is given by

(bi1, bi2, . . . , bi n−1, bin)

= (15)

(cos θi1, sin θi1 cos θi2, . . . ,
∏n−2

k=1 sin θik cos θi n−1,
∏n−2

k=1 sin θik sin θi n−1) .

The sum of the squares
j=n∑
j=1

b2ij will definitely be unity if the recursive relation

k=n∑
k=j+1

b2ik = b2ij ·
sin2 θij
cos2 θij

(16)

holds since then
k=n∑
k=2

b2ik = b2i1 ·
sin2 θi1
cos2 θi1

= cos2 θi1 ·
sin2 θi1
cos2 θi1

= sin2 θi1 (17)

and thus
k=n∑
k=1

b2ik = b2i1 +
k=n∑
k=2

b2ik = cos2 θi1 + sin2 θi1 = 1 . (18)

To start the induction, we see that equation (16) is satisfied for j = n− 1 since then we have

n−2∏
k=1

sin2 θik sin2 θi n−1 =
n−2∏
k=1

sin2 θik cos2 θi n−1 ·
sin2 θi n−1
cos2 θi n−1

. (19)
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It remains to be shown that

b2ij =
cos2 θij
sin2 θij

·
k=n∑

k=j+1

b2ik (20)

for j < n− 1. Using the recursion relation (16) itself, we obtain

b2ij =
cos2 θij
sin2 θij

·

(
b2i j+1 +

k=n∑
k=j+2

b2ik

)

=
cos2 θij
sin2 θij

·
(
b2i j+1 +

sin2 θi j+1

cos2 θi j+1

· b2i j+1

)
=

cos2 θij
sin2 θij cos2 θi j+1

· b2i j+1 ,

i.e.

bi j+1 = bij ·
sin θij
cos θij

cos θi j+1 (21)

which is identical to the construction description (4) for j < n − 1. Hence, all row vectors of

B are of unit length. The elements of Ĉ = BBT are the pairwise scalar products of the row

vectors of B. Since the scalar product of two vectors of unit length is by definition ∈ [−1, 1], Ĉ

satisfies the requirements of unit diagonal elements, symmetry, and all elements being ∈ [−1, 1].
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