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Abstract

More and more structured (equity and FX) derivatives involve many underlyings
subject to continuous barrier conditions. Known boundary value problems and high-
dimensionalities are each by themselves amenable to specific numerical techniques
that are virtually impossible to combine: finite-differencing for one and Monte Carlo for
the other. In this presentation, I review some of the methods available to handle the sit-
uation when both features, continuous monitoring of barriers and high-dimensionality,
are of crucial importance.
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Overview and Introduction

• Review of continuous versus discrete monitoring

• Finite differencing methods

• Copula based approximations

• The Broadie-Glassermann-Kou [BGK99] approximation

• A conundrum
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Review of continous versus discrete monitoring

There are many products involving barrier conditions:-

• Up-Out-, Down-Out, Up-In, Down-In- Calls and Puts (both disretely and
continuously monitored)
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• Average options: (discretely monitored)
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In themselves, they usually comprise no barrier features. However,

– max(S) = L∞ and min(S) = L−∞.

– they provide the building blocks for mountain range options with barrier
features (Everest, Altiplano).
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• Corridor style products:

Range options: Payoff depends on time spent inside a range

t

S

Payment of one coupon for each period the range is not breached

Review of continous versus discrete monitoring 4



Peter Jäckel

Pyramid options: Payoff depends on how many of a set of nested corridors
have been breached
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The connection between continuously and discretely monitored barrier prod-
uct specifications appears to be rather innocuous: if you can price it as a
discretely monitored proxy, just choose a fine time discretisation.

However, the convergence of a discretely monitored product Vdiscrete with mon-
itoring period τ to the value of its continuous counterpart has a leading coef-
ficient of order

√
τ :

Vdiscrete = Vcontinuous +O(
√
τ)

This can lead to a disproportionately large pricing error.
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For single assets in the Black-Scholes framework, we can easily correct a
discretely sampled Monte Carlo simulation for the conditional probability of
a barrier breach occurring in-between monitoring times, if we may assume
constant drift coefficients (such as interest, dividend rates and volatilities)
over the time step:

The probability of not having exceeded a barrier at H conditional on the path
being at St at time t and at St+τ at time t+ τ is

pconditional correction = 1− ϕ(2h− z)
ϕ(z)

with ϕ(z) =
e−

1
2z

2

√
2π

(1)

and
h z

ln(H/St)

σ
√
τ

ln(St+τ/St)
σ
√
τ

in the Black-Scholes (i.e. lognormal) model

H−St
σ
√
τ

St+τ−St
σ
√
τ

in the Bachelier (i.e. normal) model
.

(2)
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For double barrier (single asset) knock-out conditions, we can also correct
exactly for the possibility of a barrier breach in between monitoring points by
multiplying with the appropriate corrective probability

pconditional correction = ψdrift-free transition(St, St+τ)/ϕ(z) (3)

with ψdrift-free transition given in the appendix.

This is effectively a procedure of weighting the payoff for any one given path
(that doesn’t appear to knock-out on the discrete monitoring points) such that
any path-dependent derivative is priced exactly as if continuous barriers had
been imposed.

t

S
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Finite differencing methods

The only problem with probability corrections for Monte Carlo methods is that
they cannot be extended to multiple dimensions in the presence of correla-
tion.

Finite-differencing methods allow for correlation dependence.

The least involved finite-differencing methods are explicit methods. They are
comparatively easy to implement, even when many dimensions are needed.

The simplest explicit methods are so-called trees. These allow little flexibility
for the placement of nodes (in multiple dimensions, that is). The conse-
quence is that, whilst trees work very well for problems with comparatively
smooth terminal value conditions and gentle boundary constraints (including
Bermudan or American style features), for barrier problems, they suffer from
the node-jumping phenomenon which can spoil the result of a calculation
significantly. This problem is so severe that, already in one dimension, there
are dozens of publications on how to handle it. Little literature is available on

Finite differencing methods 9
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how to handle this problem in more than one dimension.

The easiest finite-differencing method with some flexibility over the place-
ment of nodes is the straight-forward explicit method. Like trees, however,
its convergence order is O(∆t) and thus needs many steps for convergence
reasons (if not for stability).

There are many explicit methods that give higher order convergence in ∆t.
Examples for this are the Lax-Wendroff method (identical to the predictor-
corrector method as long as the drift terms don’t cause characteristic lines
to cross in between nodes connected by the scheme), and three time step
schemes such as the leapfrog algorithm. These techniques give O(∆t2)
convergence.

The dominant problem with explicit methods is stability. Explicit schemes
such as the plain vanilla method and the predictor-corrector approach require

∆t <
1∑
i

σ2
i

∆x2
i

(4)
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(independent on the correlation). For a multi-dimensional corridor (read:
pyramid) with comparatively narrow boundaries and a minimum of 100 nodes
in each direction, this can mean that the scheme requires hundreds of thou-
sands of time steps. However, since these methods are of convergence or-
der O(∆x2), it is usually possible to use very few spatial nodes indeed (it
is possible to obtain reasonable accuracy with as little as 25 nodes in each
direction).

An exception to the stability problem of explicit methods is the leapfrog
scheme. This three time step method is unconditionally stable given certain
restrictions on the drift terms. It is of convergence order O(∆t2), provided
that both time steps are equal. Like all three time-step methods, it requires
a startup at the beginning and whenever an arbitrary event time has to be
accomodated. The leapfrog scheme can be extended to allow for different
sized time steps whilst retaining O(∆t2). However, in order not to lose sta-
bility, the second time step must be smaller than the first one which is yet
another restriction we really don’t need. What’s more, this scheme allows
for a spurious solution to arise. This phenomenon is conceptually somewhat
similar to the feature of ghosting or aliasing sometimes seen in Fourier con-
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volution methods with inadequate boundary handling, and is a side effect
of the leapfrog scheme being in fact marginally unconditionally stable, i.e. it
always has eigenvalues of unit absolute value.

Implicit methods connect several nodes on a known time slice with several
nodes on a yet unknown time slice. The most popular, unconditionally sta-
ble, and O(∆t2) convergence order method is the Crank-Nicolson algorithm,
which retains all of the above properties in multiple dimensions. In more than
one dimension, however, this requires the numerical solution of a large ma-
trix problem at each time step which is (arguably) best handled using quasi
minimal residual (QMR) or biconjugate gradient (BCG) methods with precon-
ditioning and stabilisation, or multigrid methods. QMR, BCG, and multigrid
methods are the most commonly used ones in meteorology and other sci-
ences and engineering disciplines employing numerical techniques for the
solution of convection-diffusion problems.

There are many hybrid methods, Alternating Direction Implicit being but one
of them. The idea is to use the Crank-Nicolson method only in one direction,
but switch which direction has it applied. Unfortunately, this method also has
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its problems. The main one is that it requires a coordinate transformation that
removes the correlation terms of the governing partial differential equation.
Even when this is possible, it spoils the nice alignment of nodes with barrier
conditions that is possible without the transformation.

To summarise: if you need to accurately price products with continuous bar-
rier features on a relatively small number of assets for a model that allows the
formulation of a partial differential equation, the best approach is (arguably)
to invest in the development of finite-differencing solvers using QMR, BCG,
or multigrid methods.

Finite differencing methods 13
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Survival density of 2D-corridor for T=0.77, r=12%, d1=3%, d2=2%, σ1=25%, σ2=18%, L1/S1=0.5, H1/S1=1.4, L2/S2=0.6, H2/S2=1.2
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Survival density of 2D-corridor for T=0.77, r=12%, d1=3%, d2=2%, σ1=25%, σ2=18%, L1/S1=0.5, H1/S1=1.4, L2/S2=0.6, H2/S2=1.2
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Survival density of 2D-corridor for T=0.77, r=12%, d1=3%, d2=2%, σ1=25%, σ2=18%, L1/S1=0.5, H1/S1=1.4, L2/S2=0.6, H2/S2=1.2
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Survival density of 2D-corridor for T=5.31, r=5%, d1=2%, d2=1%, σ1=25%, σ2=18%, L1/S1=0.5, H1/S1=2, L2/S2=0.55, H2/S2=1.81
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Survival density of 2D-corridor for T=5.31, r=5%, d1=2%, d2=1%, σ1=25%, σ2=18%, L1/S1=0.5, H1/S1=2, L2/S2=0.55, H2/S2=1.81
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Survival density of 2D-corridor for T=5.31, r=5%, d1=2%, d2=1%, σ1=25%, σ2=18%, L1/S1=0.5, H1/S1=2, L2/S2=0.55, H2/S2=1.81
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Copula based approximations

A copula is a generic method to connect two otherwise independent marginal
densities to form a joint multivariate density.

Can we use this technique to approximate multivariate survival densities as
they result from hard problems such as the multidimensional corridor?

Let’s take the example of the 2D corridor marginals connected by a Gaussian
copula.

Define

xi = lnSi(T ), ξi =
ξi − lnSi(0)

σi
√
T

, Ψi(ξi) =

ξiZ
−∞

ψi(ζ)dζ for i = 1, 2

with ψi(ξi) being the marginal (drift-adjusted) density as a function of the regularised loga-
rithm ξi of terminal spot value Si.
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Also, denote the univariate cumulative normal distribution as Φ(·) and the bivariate cumula-
tive normal distribution of x and y with correlation ρ as Φ(x, y, ρ).

The Gaussian copula is a [0, 1]2 → [0, 1] function given by

CGaussian(u1, u2, ρ) = Φ(z1, z2, ρ) with zi = Φ
−1

(ui) . (5)

The uniform variates u1 and u2 are linked to the marginal densities by

ui = Ψi(ξi) . (6)

This enables us to compute the joint density as generated by the marginals linked with the
Gaussian copula:

ψ(x1, x2) =
ϕ(z1, z2, ρ)
ϕ(z1)ϕ(z2)

· ψ1(ξ1)ψ2(ξ2)
σ1

√
Tσ2

√
T

(7)

with

ϕ(z1, z2, ρ) =
1

2π
p

1− ρ2
e
−1

2

 
z21−2ρz1z2+z22

1−ρ2

!
.
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Copula generated density of 2D-corridor for T=5.31, r=5%, d1=2%, d2=1%, σ1=25%, σ2=18%, L1/S1=0.5, H1/S1=2, L2/S2=0.55, H2/S2=1.81
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Copula generated density of 2D-corridor for T=5.31, r=5%, d1=2%, d2=1%, σ1=25%, σ2=18%, L1/S1=0.5, H1/S1=2, L2/S2=0.55, H2/S2=1.81
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Copula generated density of 2D-corridor for T=5.31, r=5%, d1=2%, d2=1%, σ1=25%, σ2=18%, L1/S1=0.5, H1/S1=2, L2/S2=0.55, H2/S2=1.81
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The pronounced cornering effect we see is due to the fact that the given
marginal densities cover only part of the uniform interval [0,1] which is then
connected via the Gaussian copula:

mapped area
Gaussian copula density for marginally uniform densities ρ=0.9

0

0.25

0.5

0.75

1 0

0.25

0.5

0.75

10.01

1

100

10000

1e+06

1e+08

1e+10

1e+12

Note the logarithmic scale. The base grid actually only covers the interval [Φ(−8),Φ(8)]2, i.e. not exactly [0, 1]2.
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It is possible to improve the copula generated density approximation by using
a shifted and rescaled area of the uniform Gaussian copula density for the
transformation. This means, we set

li =
ln (Li/Si(0))

σi
√
T

, hi =
ln (Hi/Si(0))

σi
√
T

, pi = Ψi(∞) = Ψi(hi),

ai = Φ(li), bi =
Φ(hi)− Φ(li)

pi
and set

zi = Φ−1(ai + biui) (8)
to be used in (7).
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The shifted and rescaled mapping area of the Gaussian copula is more suit-
able for the generation of the joint density approximation:

mapped area

Gaussian copula density for marginally uniform densities ρ=0.9
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The shifted and rescaled mapping area avoids the singularities at the corners.
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This results in better approximate copula generated densities.

Shifted copula generated density for T=5.31, r=5%, d1=2%, d2=1%, σ1=25%, σ2=18%, L1/S1=0.5, H1/S1=2, L2/S2=0.55, H2/S2=1.81
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Shifted copula generated density for T=5.31, r=5%, d1=2%, d2=1%, σ1=25%, σ2=18%, L1/S1=0.5, H1/S1=2, L2/S2=0.55, H2/S2=1.81
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Possible applications of copula-generated joint densities subject to barrier
conditions:

• High-dimensional products with knock-out boundaries where all other
methods become prohibitively expensive.

• Medium-dimensional products with moderate dependence on accurate
modelling of corner densitiies

The computational advantage of copula generated joint survival densities is
that prices can be computed using a low-dimensional Monte Carlo simula-
tion.

For a standard pyramid product, for instance, the Monte Carlo dimension-
ality reduces from 108 (3 years, monthly barrier points, 3 assets) to 6 (two
corridors in 3 asset dimensions).
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The Broadie-Glassermann-Kou approximation

In 1996, Broadie, Glassermann, and Kou [BGK99] developed an expansion
that provides an approximate connection between the price of a regularly
discretely monitored barrier product and the associated analytical pricing for-
mula of the continuous version of the derivative contract.

Let the continuous pricing formula for a barrier product with continuous barrier level at B be
given by

Vc = F (B)

In the Black-Scholes framework, the BGK approximation for the price of a product whose
barrier is discretely monitored but that is otherwise identical is then given by

Vd ≈ F (e±
|ζ(12)|
√

2π
σ
√
τ ·B) +O(τ) . (9)

with
|ζ(12)|
√

2π
≈= 0.58259716. The only conditions on the expansion are that τ must be not

too large and that the spot must be sufficiently far away from the barrier.
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In other words, the discretely monitored contract is approximated as a con-
tinuously monitored contract with a shifted barrier level given by

Bshifted = e±
|ζ(12)|
√

2π
σ
√
τ ·B . (10)

The sign in the exponent in equations (9) and (10) is selected according to
whether the initial spot level is above or below the threshold barrier.

In the normal (Bachelier) setting, the barrier shift is given by

Bshifted = B ±
|ζ(1

2)|√
2π

σ
√
τ . (11)
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The BGK formula can also be used in reverse to approximate an adjusted
barrier to be used in a time-discretised Monte Carlo simulation with monitor-
ing points being τ when we actually wish to compute the value of a continu-
ously monitored barrier product:

Bshifted for Monte Carlo = e∓
|ζ(12)|
√

2π
σ
√
τ ·B . (12)

Note: The BGK adjustment is an expansion in the monitoring interval τ and
thus not affected by correlation.

The BGK barrier adjustment is an extremely important and powerful
tool for the handling of continuous barrier features.
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An alternative view is to see the BGK formula as an adjustment to the path-maximum
(-minimum) along any one Monte Carlo path in order to compensate for the fact that the
maximum (minimum) of any continuous path is higher (lower) than the highest (lowest) point
observed at any of the time-discretised monitoring points.

This enables us to use the same approximation for the Monte Carlo simulation of products
that depend on the maximum or minimum over a given period. This is useful for the pricing
of products of lookback and hindsight style.

t

S M

M’
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A simple model for the skew is displaced diffusion [Rub83], where the spot
process is governed by the stochastic differential equation

d(S +A)
S +A

= µdt+ σdddW (13)

whose solution is

St = (S0 +A0)e(µ−1
2σdd)t+σddWt −At (14)

with At = A0eµt. An approximate barrier adjustment in this case is

Bt = (B +At)e
∓
|ζ(12)|
√

2π
σ
√
τ −At . (15)

This means, we need to adjust the barrier level individually for each discrete
monitoring time unless the risk-neutral drift µ is equal to zero.
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A conundrum

The BGK shift relies on the initial spot level not to be too close to the barrier.

What happens if we get near the barrier?

For example, take a drift-free standard Wiener process W on the time inter-
val [0, 1].

The probability of survival given a continuous absorbing barrier at hc ≥ 0 is

psurvival = 1− 2Φ(−hc) . (16)

Now, assume we have n ≥ 1 (i.e. τ = 1/n) discrete monitoring points at the
discrete monitoring level hd ≥ 0. Absorption occurs if the process is below
the barrier at any of the monitoring times.
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If we can compute the survival probability psurvival(hd; τ) as a function of τ for a
number of different monitoring discretisations τ , we can infer the associated
equivalent continuous barrier by virtue of

hc(hd; τ) = Φ−1
(
1
2 −

1
2psurvival(hd; τ)

)
. (17)

Let us also posit the existence of an equivalent continuous barrier correction
expansion

hc(hd; τ) =
∞∑
n=0

fi(hd) · τ
n/2 . (18)

Naturally, we have f0(x) ≡ x, i.e.

hc(hd; τ) = hd +
∞∑
n=1

fi(hd) · τ
n/2 .
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In general, we can compute f1(hd) using

f1(hd) = lim
τ→0

hc(hd; τ)− hd√
τ

= lim
τ→0

Φ−1
(
1
2 −

1
2psurvival(hd; τ)

)
− hd√

τ
. (19)

The BGK correction formula gives us a boundary condition for f1:

lim
x→∞

f1(x) = |ζ (1/2) |/
√

2π (20)

Using Fourier convolution and regression techniques, we can approximate
f1(hd) numerically also where the required assumptions for the BGK expan-
sion no longer hold, i.e. near the barrier.

Understanding the behaviour near the barrier can be crucial for the success-
ful hedge of a live derivatives position.
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What’s happening for hd → 0 ? Let us examine the case hd = 0 more closely.

The absorption probability for n regularly spaced discrete absorption barriers
that extend from 0 to −∞ can be computed by the use of an equivalent
binomial tree of 2n steps:

absorbing barrier

absorbing barrier

absorbing barrier

absorbing barrier

t

W

absorbed path

2/4 paths survive

6/16 paths survive

20/64 paths survive

70/256 paths survive

All paths that cross into the negative domain are considered absorbed.
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This makes for an efficient counting algorithm effectively based on an explicit
finite differencing implementation of the forward Kolmogorov equation:
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1
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i.e. 1·5+2·9+1·5=28

Note: the so computed absorption probabilities are exactly equal to those re-
sulting from a continuous process with n regularly spaced monitoring points.
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With the row index i = 0 representing the start of the tree, and the column
index j = 0 representing the node at the barrier, the number of paths that
reach a node are given by the recursive rules

ai i = 1 and ai j = 0 ∀ j > i (21)

ai 0 = ai−1 0 + ai−1 1 (22)

ai j = ai−1 j−1 + 2 · ai−1 j + ai−1 j+1 (23)

The probability of survival is1

psurvival(0, 1/n) = E

 n∏
k=1

1( kP
j=1

zj > 0

)
 = 2−2n ·

n∑
j=0

an j (24)

where all zj are independent standard Gaussian variates.

1Unfortunately, I was not able to derive a closed form solution for psurvival(0,
1/n).
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This enables us to compute the convergence of

f approx
1 (hd; τ)

∣∣∣
hd=0

=
hc(hd; τ)− hd√

τ

∣∣∣∣
hd=0

=
Φ−1

(
1
2 −

1
2psurvival(hd; τ)

)
− hd√

τ

∣∣∣∣∣
hd=0

(25)
for τ → 0 very accurately:
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We obtain numerically(
f approx
1 (0; 2−1)

)2 ≈ 0.477804760(
f approx
1 (0; 2−5)

)2 ≈ 0.498690275(
f approx
1 (0; 2−10)

)2 ≈ 0.499959302(
f approx
1 (0; 2−15)

)2 ≈ 0.499998728

(26)

which means, on the scale of accuracy required for practical derivatives pric-
ing purposes, we have f1(0) =

√
1/2.

For the binomial tree

Conjecture: The linear coefficient function f1(hd) in the
expansion (18) converges to

√
1/2 in the limit of hd → 0,

i.e.
lim
hd→0

f1(hd) =
1√
2
. (27)
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Combining equation (16), conjecture (27), and the expansion of Φ(ε)

Φ(ε) = 1/2 +
ε√
2π
− ε3√

2π
+O(ε5)

has the following consequence:

The survival probability of a standard Wiener process on the unit time interval
[0,1] with n regulary timed monitoring points at which the process is absorbed
if it is below zero is given by

psurvival(0; 1/n) =
1√
nπ

+O (1/n) . (28)

Numerically, we find

psurvival(0; 1/n) ≈ 1√
nπ

·
(

1− 1
8n

(
1− 1

16n

(
1− 5

8n

)))
+O

(
n−

9
2

)
. (29)
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Appendix
A. Transition density subject to double barrier knock-out

Define S as the initial spot value, L as a lower barrier and H as a higher barrier, and

h z l

ln(H/St)

σ
√
τ

ln(St+τ/St)
σ
√
τ

ln(L/St)

σ
√
τ

in the Black-Scholes (i.e. lognormal) model

H−St
σ
√
τ

St+τ−St
σ
√
τ

L−St
σ
√
τ

in the Bachelier (i.e. normal) model

as well as δ = h− l and

αi1 = −2h− 2iδ αi2 = −2(i+ 1)δ αi3 = −2l + 2iδ αi4 = 2(i+ 1)δ .

Then, the transition density (assuming a drift-free process) over the time step τ subject to
knock-out barriers at L and H can be derived using a recursive reflection principle to yield

ψdrift-free transition(z) = ϕ(z) +
∞X
i=0

4X
j=1

(−1)
j
ϕ(z + αij) . (30)
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Alternatively, one can use a Fourier expansion approach to obtain the following expression
for the same drift-free transition density

ψdrift-free transition(z) = −
2

δ

∞X
j=0

"
sin (ω2j+1) e−

1
2ω

2
2j+1 sin (ω2j+1(z − l)) + (31)

sin (ω2j+2) e−
1
2ω

2
2j+2 sin (ω2j+2(z − l))

#

withωj = jπ
δ . Note that both in (30) and (31) terms are grouped to reduce the risk of spurious

convergence if computation is continued until subsequent terms no longer contribute to the
sum.

For constant process coefficients, the drift correction for the drift-free transition density is
given by the Radon-Nikodym derivative

dP
dQ

= eγz−
γ2

2 with γ =

8><>:
(r−d−1

2σ
2)T

σ
√
T

for Black-Scholes

(r−d)T
σ
√
T

for Bachelier
. (32)
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