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There are many models for the uncertainty in future instantaneous volatility. When it comes to an actual
implementation of a stochastic volatility model for the purpose of the management of exotic derivatives,
the choice of model is rarely made to capture the particular dynamical features relevant for the specific
contract structure at hand. Instead, more often than not, the model is chosen that provides the greatest
ease with respect to market calibration by virtue of (semi-)closed form solutions for the prices of plain vanilla
options. In this presentation, the further implications of various stochastic volatility models are reviewed with
particular emphasis on both the dynamic replication of exotic derivatives and on the implementation of the
model. Also, a new class of models is introduced that not only allows for the level of volatility, but also for
the observed skew to vary stochastically over time.

∗The views expressed in this document are those of the author and do not necessarily represent the views of his employers.
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I. Why stochastic volatility?

• Realised volatility of traded assets displays significant variability. It would only
seem natural that any model used for the hedging of derivative contracts on
such assets should take into account that volatility is subject to fluctuations.

• More and more derivatives are explicitly sensitive to future (both implied and
instantaneous) volatility levels. Examples are cliquets, globally floored and/or
capped cliquets, and many more.

• Some (apparently) comparatively straightforward exotic derivatives such as
double barrier options are being being re-examined for their sensitivity to un-
certainty in volatility.

• New trading ideas such as exotic volatility options and skew swaps, however,
give rise to the need for new kinds of stochastic volatility model such as the
stochastic skew model.

I. Why stochastic volatility? Peter Jäckel
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II. What stochastic volatility?

The concept of stochastic volatility, or rather the idea of a second source of risk
affecting the level of instantaneous volatility, should not be seen in isolation from
the nature of the underlying asset or deliverable contract.

For the three most developed modelling domains of equity, FX, and interest rate
derivatives, different effects are considered to be at least partially responsible
for the smile or skew observed in the associated option markets.

II. What stochastic volatility? Peter Jäckel
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Economic effects giving rise to an equity skew

• Leverage effects [Ges77, GJ84, Rub83]. A firm’s value of equity can be seen
as the net present value of all its future income plus its assets minus its debt.
These constituents have very different relative volatilities which gives rise to
a leverage related skew.

• Supply and demand. Equivalently, downwards risk insurance is more desired
due to the intrinsic asymmetry of positions in equity: by their financial pur-
pose it is more natural for equity to be held long than short, which makes
downwards protection more important.

• Declining stock prices are more likely to give rise to massive portfolio re-
balancing (and thus volatility) than increasing stock prices. This asymmetry
arises naturally from the existence of thresholds below which positions must
be cut unconditionally for regulatory reasons.

II. What stochastic volatility? Peter Jäckel
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Economic effects giving rise to an FX skew and smile

• Anticipated government intervention to stabilise FX rates.

• Government changes that are expected to change policy on trade deficits,
interest rates, and other economic factors that would give rise to a market
bias.

• Foreign investor FX rate protection.

Economic effects giving rise to an interest rate skew and smile

• Elasticity of variance and/or mean reversion. In other words, interest rates are
for economic reasons linked to a certain band. Unlike equity or FX, interest
rates cannot be split, bought back or re-valued and it is this intrinsic difference
that connects volatilities to absolute levels of interest rates.

• Anticipated central bank action.

II. What stochastic volatility? Peter Jäckel
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None of these effects are well described by strong correlation be-
tween the asset’s own driving factor and a second factor governing
the uncertainty in volatility since the are all based on deterministic
relationships.

Still, most stochastic volatility models incorporate a skew by virtue
of strong correlation of volatility and stock. The strong correlation is
usually needed to match the pronounced skew of short-dated plain
vanilla options.

In this context, one might wonder if it wouldn’t be more appropriate
to let the stochasticity of volatility explain the market-observed fea-
tures related to or associated with uncertainty in volatility, and use
other mechanisms to account for the skew.

II. What stochastic volatility? Peter Jäckel



Stochastic Volatility Models: Past, Present and Future 9

III. One model to rule them all?

An important question that must be asked when a stochastic volatility model is
considered is: what is it to be used for?

• Single underlying moderate exotics with strong dependence on forward
volatility? Forward starting options? Cliquets?

• Single underlying exotics with strong dependence on forward skew? Globally
floored and/or capped cliquets and friends?

• Single underlying exotics with strong path dependence? Barriers of all na-
tures (single, double, layered, range accruals).

III. One model to rule them all? Peter Jäckel



Stochastic Volatility Models: Past, Present and Future 10

• Multiple underlying moderate exotics with strong dependence on forward
volatility? Options on baskets. Cliquets on baskets.

• Multiple underlying moderate exotics with strong dependence on forward
skew? Mountain range options.

• Multiple underlying moderate exotics with strong dependence on correlation?
Mountain range options.

Not all of these applications would necessarily suggest the use of the same
model!

A stochastic volatility model that can be perfectly adequate to capture the risk
in one of the above categories may completely miss the exposures in other
products.

Example: consider the use of a conventional stochastic volatility model for the
management of options on variance swaps versus the use of the same model
for options on future market skew in the plain vanilla option market.

III. One model to rule them all? Peter Jäckel
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IV. Mathematical features of stochastic volatility models

Heston [Hes93]: V
[
σ2
S

]
∼ O

(
σ2
S

)
(mean reverting)

dS = µSdt+
√
vS dWS (1)

dv = κ(θ − v)dt+ α
√
v dWv (2)

E[dWS · dWv] = ρ dt (3)

In order to achieve calibration to the market given skew, almost always:

• 0.7 < |%| . 1 is required.

• κ must be very small (kappa kills the skew).

• α must be sizeable.

• θ is by order of magnitude not too far away from the implied
volatility of the longest dated option calibrated to.

IV. Mathematical features of stochastic volatility models Peter Jäckel
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The volatility process can reach zero unless [Fel51, RW00]

κθ >
1
2
α2 (4)

which is hardly ever given in a set of parameters calibrated to market!

This means the Heston model achieves calibration to today’s observed plain
vanilla option prices by balancing the probabilities of very high volatility scenar-
ios against those where future instantaneous volatility drops to very low levels.

The average time volatility stays at high or low levels is measured by the mean
reversion scale 1/κ.

IV. Mathematical features of stochastic volatility models Peter Jäckel
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Even when κθ > 1
2α

2, the long-term distribution of
∫ t+τ
t

σ(t)2dt is sharply peaked
at low values of volatility as a result of calibration1.

The dynamics of the calibrated Heston model predict that:

volatility can reach zero,

stay at zero for some time,

or stay extremely low or very high for long periods of time.

1see http://www.dbconvertibles.com/dbquant/Presentations/LondonDec2002RiskTrainingVolatility.pdf, slides
33–35, for diagrams on this feature.

IV. Mathematical features of stochastic volatility models Peter Jäckel
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Stein and Stein / Schöbl and Zhu [SS91, SZ99]: V[σS] ∼ O (1) (mean reverting)

dS = µSdt+ σS dWS (5)

dσ = κ(θ − σ)dt+ α dWσ (6)

E[dWS · dWσ] = ρ dt (7)

The distribution of volatility converges to a Gaussian distribution with mean θ

and variance α2

2κ . Since the sign of σ bears meaning only as a sign modifier of
the correlation, we have the following two consequences:

• The sign of correlation between movements of the underlying and volatility
can suddenly switch.

• The level of volatility has its most likely value at zero.

IV. Mathematical features of stochastic volatility models Peter Jäckel
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The dynamics of the Stein and Stein / Schöbl and Zhu model
predict that:

volatility is very likely to be near zero,

and that the sign of correlation with the spot movement driver
can switch.

IV. Mathematical features of stochastic volatility models Peter Jäckel
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Hull-White [HW87]: V
[
σ2
S

]
∼ O

(
σ4
S

)
(zero reverting for µv < 0)

dS = µSS dt+
√
vS dWS (8)

dv = µvv dt+ ξv dWσ (9)

E[dWS · dWσ] = ρ dt (10)

Since v is lognormally distributed in this model, and since σ =
√
v, we have

E[σ(t)] = σ(0) · e1
2µvt−

1
8ξ

2t (11)

V[σ(t)] = σ(0)2 · eµvt ·
(

1− e−
1
4ξ

2t
)

(12)

M[σ(T )] = σ(0) · e
1
2(µv−ξ2)t (13)

where M[·] is defined as the most likely value.

This means, for µv < 1
4ξ

2, the expectation of volatility converges to the mean-
reversion level at zero. For µv > 1

4ξ
2, the expectation diverges.

IV. Mathematical features of stochastic volatility models Peter Jäckel
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Further, unless µv < 0, the variance of volatility grows unbounded. In contrast
to that, if µv < 0, the variance of variance diminishes over time. And finally, the
most likely value for volatility converges to zero unless µv > ξ2.

For the particular case of µv = 0, we have the special combination of features
that the expectation and most likely value of volatility converges to zero, whilst
the variance of volatility converges to σ2.

Any choice of parameters that provides a reasonable match of market given
implied volatilities is extremely likely to lead to µv < 0 in which case we have:

The dynamics of the Hull-White stochastic volatility model
predict that:

both expectation and most likely value of instantaneous
volatility converge to zero.

IV. Mathematical features of stochastic volatility models Peter Jäckel
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Hagan [HKL02]: V[σS] ∼ O
(
σ2
S

)
(not mean reverting)

dS = µS dt+ σS dWS (14)

dσ = ασ dWσ (15)

E[dWS · dWσ] = ρ dt (16)

This model is equivalent to the Hull-White stochastic volatility model for the spe-
cial case of µv = α2 and ξ = 2α. In this model, instantaneous volatility is a
martingale but the variance of volatility grows unbounded. At the same time, the
most likely value for volatility converges to zero.

IV. Mathematical features of stochastic volatility models Peter Jäckel
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The dynamics of the Hagan model predict that:

the expectation of volatility is constant over time,

that variance of instantaneous volatility grows without limit,

and that the most likely value of instantaneous volatility
converges to zero.

IV. Mathematical features of stochastic volatility models Peter Jäckel
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Scott and Scott-Chesney [Sco87, CS89]: V[σS] ∼ O
(
σ2
S

)
(mean reverting)

dS = µSdt+ eyS dWS (17)

dy = κ (θ − y) dt+ α dWy (18)

E[dWS · dWy] = ρ dt (19)

Volatility cannot reach zero, nor does its most likely value converge there.

3000

4000

5000

6000

7000

0 0.5 1 1.5 2 2.5
20%

30%

40%

50%

t [years]

S

σ

Sample path for Scott-Chesney model with S0 = 6216, r = 5%, d = 1%, σ0 = 30%, θ = ln 30%, κ = 0.1, α = 40%, α2

2κ = 2, ρ = 0. Euler integration with ∆t = 1/365.

IV. Mathematical features of stochastic volatility models Peter Jäckel
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The market-observable skew of implied volatilities would require a strong nega-
tive correlation for this model to be calibrated.
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However, the required strong correlation between volatility and spot is not sup-
ported by any econometric analysis.

IV. Mathematical features of stochastic volatility models Peter Jäckel
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Nonetheless, it is possible to reproduce the burstiness of real volatility returns
by increasing the mean reversion.
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Fouque et alii compare strong mean reversion dynamics with real data and find
that it captures the apparent burstiness of realised volatilities very well [FPS00]:

• The larger κ, the more rapidly the volatility distribution converges to its sta-
tionary state.

• 1/κ is the time scale for volatility auto-decorrelation.

• The right measure for uncertainty in volatility is

α2

2κ
,

not α on its own.

Large mean reversion causes volatility to approach its stationary distribution
quickly.

IV. Mathematical features of stochastic volatility models Peter Jäckel
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The problem with future volatility being likely to hover near zero for models such
as the Heston and the Stein & Stein model goes away when mean reversion is
strong.

However, if mean reversion is large, correlation between volatility and spot does
not suffice to generate a significant skew.

To achieve market calibration, a different mechanism is needed. This could
be independent jumps of the stock itself, or a stock-dependent volatility scaling
function.

IV. Mathematical features of stochastic volatility models Peter Jäckel
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The main drawback of the Scott-Chesney model is that:

it requires very high correlation between the spot and the
volatility process to calibrate to a pronounced skew,

and that the skew is fully deterministic.

These features are also shared by all of the above discussed
models.

In addition, it has been noticed that log-normal volatility dynamics make the
existence variance and higher moments of the financial underlying question-
able [AP04].

IV. Mathematical features of stochastic volatility models Peter Jäckel
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The hyperbolic-local-hyperbolic-stochastic volatility model

A model that provides both local and stochastic volatility features, and easy
numerical tractability is the Hyp-Hyp model [KJ06, JK07] for x = S/S0 given by

dx = σ0 · f(x) · g(y) · dW (20)

dy = −κy · dt+ α
√

2κ · dZ (21)

with correlated Brownian motions 〈dW, dZ〉 = ρ · dt, y(0) = 0 and the transfor-
mation functions

f(x) =
[
(1− β + β2) · x+ (β − 1) ·

(√
x2 + β2(1− x)2 − β

)]/
β . (22)

g(y) = y +
√
y2 + 1 . (23)

The functions f(x) and g(y) are hyperbolic conic sections specifically chosen to
give a behaviour similar to CEV [CR76] local volatility and log-normal stochastic
volatility, but without the unpleasant features of non-differentiability of the local
volatility function near zero, and without moment explosions.

The model is effectively a drop-in replacement for the SABR [HKL02] model.

IV. Mathematical features of stochastic volatility models Peter Jäckel
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V. The stochastic skew model

dS = µSdt+ σf(S; γ)SdWS (24)

d lnσ = κσ(lnσ∞ − lnσ)dt+ ασdWσ (25)

dγ = κγ(γ∞ − γ)dt+ αγdWγ (26)

with

f(S; γ) = eγ·(
S
H−1) (27)

and
E[dWσdWγ] = E[dWσdWS] = E[dWγdWS] = 0 (28)

V. The stochastic skew model Peter Jäckel
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This scaling ensures that:-

• For negative γ, the local volatility scaling factor decays from e−γ for S → 0 to
0 for S →∞.

• The local volatility scaling factor f at spot level H is exactly 1.

• The local volatility scaling factor f change for a spot move of δ ·H near H is
given by

∆f =
∂f

∂S

∣∣∣∣
S=H

· δ ·H =
γ

H
· δ ·H = δ · γ . (29)

In other words, γ is a measure for the local volatility skew at H.

V. The stochastic skew model Peter Jäckel
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Maintenance of correlation matrices is greatly simplified by the assumption of
independence of the individual factors.

The associated partial differential equation governing the boundary value prob-
lem of derivatives prices is

Vt +
(
µ− 1

2e2yf2(ex; γ)
)︸ ︷︷ ︸

µ̂x

Vx + κσ (lnσ∞ − y)︸ ︷︷ ︸
µ̂y

Vy + κγ (γ∞ − γ)︸ ︷︷ ︸
µ̂γ

Vγ (30)

+1
2e2yf2(ex; γ)Vxx + 1

2α
2
σVyy + 1

2α
2
γVγγ = r · V

with
x = lnS and y = lnσ . (31)

V. The stochastic skew model Peter Jäckel
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Jumps without jumps

The exponential dependence of the volatility scaling function f on the spot level
S can lead to jump-like upward (for γ > 0) or downward (for γ < 0) rallies when
|γ| is of significant size.
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This can happen due to the exponential nature of the scaling function f , especially during peri-
ods of increased |γ|.
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These events only occur when the skew is very pronounced:
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A hyperbolic alternative

The shown implosions of the spot are caused by the exponential form of the scaling function
f and are technically akin to process explosions seen also for the short rate in a lognormal
HJM setting and other equations involving a locally exponential scaling of volatility. Naturally, it
is straightforward to use other scaling functions that avoid the spot implosions, should they be
undesirable.

An alternative to the exponential scaling is the hyperbolic function

f = γ

„
S

H
− 1

«
+

s
γ2

„
S

H
− 1

«2

+ (1− η)2 + η (32)
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Stochastic Volatility Models: Past, Present and Future 36

0.08

0.42

0.75

1.08

1.42

1.75

2.08

2.420.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

15%

20%

25%

30%

35%

40%

45%

50%

implied volatility

T

K/S

Implied volatility surface for stochastic skew model with a hyperbolic scaling function f and S0 = H = 6216, r = 5%, d = 1%,

σ0 = σ∞ = 25%, κσ = 6, ασ = 1,

r
α2
σ

2κσ = 28.87%, γ0 = γ∞ = −3, κγ = 3, αγ = 3,

s
α2
γ

2κγ = 1.22, and η = 1/4.

V. The stochastic skew model Peter Jäckel
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VI. Monte Carlo methods and stochastic volatility models

The Heston model is often used to parametrise the observed market volatili-
ties since there are semi-analytical solutions for plain vanilla options under this
model.

However, when multi-asset derivatives are priced, we often need to resort to
numerical integration of the governing stochastic differential equations.

Euler discretisation of the Heston variance process:

∆v = κ(θ − v)∆t+ α
√
v
√

∆t · z (33)

with z ∼ N (0, 1). This means for z < z∗ with

z∗ = −v + κ(θ − v)∆t
α
√
v∆t

(34)

the Euler step causes variance to cross over to the negative domain!

VI. Monte Carlo methods and stochastic volatility models Peter Jäckel
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A popular method of choice to avoid this artifact of Euler integration is to use Itô’s
lemma to transform to coordinates where the Euler step remains in the domain
of validity for all possibly drawn Gaussian variates. For the Heston variance
process, the coordinate we have to transform to is volatility itself:

dσ =
κ
2

[
1
σ

(
θ − α2

4κ

)
− σ

]
dt+ 1

2α dW (35)

Alas, it seems we have transformed ourselves from the pan into the fire: whilst equation (2)
would always show a positive drift term for all θ > 0 no matter how close variance came to
zero, and only the diffusion component could make it reach zero, the drift term in equation (35)
diverges to negative infinity if θ < α2

4κ irrespective of the path taken by the diffusion component.

This means, the transformed equation shows strong (drift-dominated) absorption into zero near
zero, whilst the original stochastic differential equation for the variance only exhibits zero as an
attainable boundary due to the diffusion component being able to overcome the mean reversion
effect (i.e. the positive drift) for 2θκ < α2.

VI. Monte Carlo methods and stochastic volatility models Peter Jäckel
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The apparently contradictory behaviour near zero has a simple explanation:

In an infinitesimal neighbourhood of zero, Itô’s lemma cannot be
applied to the variance process (2).

The transformation of the variance process to a volatility
formulation results in a structurally different process !

Naturally, this feature raises its ugly head in any numerical implementation
where we may prefer to use a transformed version of the original equations!

An alternative, when suitable transformations are not available, is to use implicit
or mixed Euler schemes [KP99] or more advanced methods such as balanced
Milstein schemes [Sch96, MPS98, KS06].

Specifically for the Heston, aka CIR [CIR85], process, there is also a method
proposed by Andersen [And07] which is based on the stepwise approximation
of the square root process by a lognormal distribution.

VI. Monte Carlo methods and stochastic volatility models Peter Jäckel
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When volatility and underlying are uncorrelated, we can take advantage of the
root-mean-square volatility lemma given in [HW87].

Without correlation, we may condition on the volatility path, and a simulation
scheme only needs

∆v̂n :=

tn+1∫
tn

σ2(t) dt (36)

to simulate the underlying

lnSn+1 = lnSn + µ∆tn −
1
2

∆v̂n +
√

∆v̂n · z (37)

Willard [Wil97] and Fouque et al. [FPS00] give an extension for ρ 6= 0 as follows.
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If we can explicitly compute, for the given volatility or variance path, the quanti-
ties

∆v̂n :=

tn+1∫
tn

σ2(t) dt (38)

∆ω̂n :=

tn+1∫
tn

σ(t) dW (t) (39)

then we can directly draw the logarithm of the spot level at the end of a large
time step (tn+1 − tn) with the scheme

lnSn+1 = lnSn + µ∆tn −
1
2

∆v̂n + ρ∆ω̂n +
√

1− ρ2 ·
√

∆v̂n · z (40)

where z is a standard normal variate that is independent from the variate used
to construct the variance step vn → vn+1.

This idea can be extended to be the basis of other, advanced schemes [KJ06].
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In comparison to the Heston model, the Stein and

Stein / Schöbl and Zhu, Hull-White, Hagan,

Scott/Scott-Chesney, and Hyp-Hyp model can be

simulated much more easily since the stochastic

differential equation for the volatility component

has simple analytical solutions.
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VII. Finite differencing and stochastic volatility models

Non-zero correlation between the different factors makes it impossible to use
Alternating Direction Implicit methods (unless we transform away the correlation
term which is usually very bad for the handling of boundary conditions, or we
combine it with an explicit method for the cross terms which makes the scheme
effectively explicit). Explicit methods require rather small time steps in order to
avoid explosions due to numerical instabilities.

The multi-dimensional equivalent of the Crank-Nicolson method (also denoted
as Peaceman-Rachford-Douglas method [PR55, DR56]) can be implemented
with iterative solver algorithms such as BiCGStab [GL96, dV92, Ger93] that don’t
require the explicit representation of a matrix at all.

All that is needed is a function that carries out the same calculations that would
be done in an explicit method. A useful collection of utilities for this purpose is
the Iterative Template Library [LLS].
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For the stochastic skew model, the independence of the three factors makes it
possible to use a three factor Alternating Direction Implicit version of the Crank
Nicolson method. This means it is possible to have large time steps in a fast
finite differencing scheme.

Since we have zero correlation in the stochastic skew model, the number of
discretisation layers in both the volatility and the skew factor can be kept small
(∼ 20–30).

Also, boundary conditions can be kept simple in all directions and in the corners:
Vii = 0 for i = x, y, γ.

The speed of three factor ADI implementations is compatible with that of any
safe implementation involving numerical contour integrals or Fourier inversions
of characteristic functions etc.
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The generalisation of Alternating Direction Implicit (or Alternating Direction
Crank-Nicolson) to multiple spatial dimensions is based on the idea of an op-
erator split [PR55, DR56, Mar89].

Take the equation

Vt +
X
i

bµi(t,x)Vxi + 1
2

X
i

σ
2
i (t,x)Vxixi = r · V, (41)

transform away the source term by setting u := V e−rt (which almost certainly changes your
boundary conditions)

ut +
X
i

“bµi∂xi + 1
2σ

2
i∂

2
xi

”
| {z }

Li

·u = 0 . (42)

i.e.
(∂t + L) · u = 0 with L =

X
i

Li . (43)
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Finite differencing of accuracy order O(∆t2):

∂t · u →
1

∆t
[u(t,x)− u(t−∆t,x)] (44)

∂xi · u →
1

2∆xi

ˆ
u(t, . . . , xi + ∆xi, . . .)− u(t, . . . , xi −∆xi, . . .)

˜
(45)

∂
2
xi
· u →

1

∆x2
i

ˆ
u(t, . . . , xi + ∆xi, . . .)− 2u(t, . . . , xi, . . .) + u(t, . . . , xi −∆xi, . . .)

˜
(46)

Discretisation of the differential operators yields Li → Di with

Di · u(t,x) = bµi(t,x)
1

2∆xi

h
u(t, . . . , xi + ∆xi, . . .)− u(t, . . . , xi −∆xi, . . .)

i
(47)

+
1

2
σ

2
i (t,x)

1

∆x2
i

h
u(t, . . . , xi + ∆xi, . . .)− 2u(t,x) + u(t, . . . , xi −∆xi, . . .)

i

Di · u(x) =
1

2∆x2
i

" “
σ

2
i (t,x) + bµi(t,x)∆xi

”
u(. . . , xi + ∆xi, . . .) − 2σ

2
i (t,x)u(x)

+
“
σ

2
i (t,x)− bµi(t,x)∆xi

”
u(. . . , xi + ∆xi, . . .)

#
(48)
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Stochastic Volatility Models: Past, Present and Future 47

Crank-Nicolson:

(∂t + L) · u(t,x) = 0 (49)

is to be approximated by

1

∆t

h
u(t,x)− u(t−∆t,x)

i
+ 1

2D ·
h
u(t,x) + u(t−∆t,x)

i
= 0 (50)

This means, a single step in the Crank-Nicolson scheme is given by solving`
1− 1

2∆tD
´
· u(t−∆t,x) =

`
1 + 1

2∆tD
´
· u(t,x) (51)

for u(t−∆t,x).

The operator split of the discretised operator D =
∑
iDi is to split D into its

commuting components {Di}, and to solve (51) for each of the Di individually in
sequence.
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A single time step in the n-dimensional operator-split finite differencing scheme
is thus given by a sequence of n one-dimensional finite differencing steps.
Solve: (

1− 1
2∆tD1

)
· ũ(1)(x) =

(
1 + 1

2∆tD1

)
· u(t,x)(

1− 1
2∆tD2

)
· ũ(2)(x) =

(
1 + 1

2∆tD2

)
· ũ(1)(x)

... ... ...(
1− 1

2∆tDn

)
· ũ(n)(x) =

(
1 + 1

2∆tDn

)
· ũ(n−1)(x)

and set

u(t−∆t,x) := ũ(n)(x) .
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For commuting Di and Dj, i.e. DiDj = DjDi, this scheme is, like the one-
dimensional Crank-Nicolson method, of convergence order O

(
∆t2

)
:

ũ(j)(x) =
(
1− 1

2∆tDi

)−1 ·
(
1 + 1

2∆tDi

)
· ũ(j−1)(x)

=
(
1 + 1

2∆tDi + 1
4∆t2D2

i

)
·
(
1 + 1

2∆tDi

)
· ũ(j−1)(x) +O

(
∆t3

)
=

(
1 + ∆tDi + 1

2∆t2D2
i

)
· ũ(j−1)(x) +O

(
∆t3

)
(52)

=⇒

u(t−∆t) =

[∏
i

(
1 + ∆tDi + 1

2∆t2D2
i

)]
· u(t) +O

(
∆t3

)

=

1 + ∆t
∑
i

Di + 1
2∆t2

∑
i,j

DiDj

 · u(t) +O
(
∆t3

)
(53)
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Equation (53) is of precisely the same form as the one we obtain for u in t from
the continuous equation (∂t + L) · u = 0 :

u(t−∆t) =

1 + ∆t
∑
i

Li + 1
2∆t2

∑
i,j

LiLj

 · u(t) +O
(
∆t3

)
(54)

In order to avoid a building up of lower order error terms due to the fact that Di

and Dj don’t always commute perfectly (primarily due to the boundary condi-
tions, but also due to round-off), the ordering of the scheme can be permuted.

For a three-factor model, this means there are 3! = 6 permutations that we can
cycle through as shown in the following example.
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Stochastic Volatility Models: Past, Present and Future 51
//
// Schematic sample code for the control block and main loop of a three-dimensional operator split Crank-Nicolson method.
//
// This code does not contain examples for the implementation of the actual Crank-Nicolson steps that need to be
// carried out for each of the three components, nor the incorporation of the lateral boundary conditions.
//

const unsigned long n1 = 200, n2 = 30, n3 = 30; // Sample values for the number of spatial levels in each direction.

//
// There are 6 possible permutations of a sequence of three elements. We therefore adjust the number of steps to be a
// multiple of 6. When product related event dates are to be considered, this ought to be done for each time interval.
//
const unsigned long numberOfSteps = 200, adjustedNumberOfSteps = ((numberOfSteps+5)/6)*6;

//
// Each scheme consists of three steps. The set of all possible schemes is given by all possible permutations. We sort
// them such that the last step of any one scheme is different from the first step of the next scheme in the sequence.
//
const unsigned long schemes[6][3] = {

{ 0, 1, 2 }, // D1, D2, D3
{ 0, 2, 1 }, // D1, D3, D2
{ 2, 0, 1 }, // D3, D1, D2
{ 2, 1, 0 }, // D3, D2, D1
{ 1, 2, 0 }, // D2, D3, D1
{ 1, 0, 2 }, // D2, D1, D3

};

//
// The class ThreeDimensionalContainer is a user-written container for the solution values at the grid nodes.
// Keep it simple and fast.
//
ThreeDimensionalContainer terminalBoundaryCondition(n1,n2,n3), workspace;
//
// Here, the terminal boundary conditions should be evaluated to populate the known lattice values at the final point
// in time which is the starting point for the backwards induction algorithm. The evaluation of the terminal boundary
// conditions will normally involve the layout of the grid in all three coordinates taking into account potential
// discontinuities of the terminal boundary condition (effectively the initial values) or its derivative (you should
// always have a grid level at the strike of plain vanilla options), the precomputation of any coefficient
// combinations that will be constant for each spatial node through time, etc.
//

ThreeDimensionalContainer * threeDimensionalContainers[2] = { &terminalBoundaryCondition, &workspace };
ThreeDimensionalContainer * knownValues = &terminalBoundaryCondition, * unknownValues;
unsigned long i, j, k, schemeindex=5, stepInSchemeIndex, containerIndicator=0;
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//
// The main loop of backward induction.
//
for (i=0;i<adjustedNumberOfSteps;++i){
++schemeindex %= 6;
for (stepInSchemeIndex=0;stepInSchemeIndex<3;++stepInSchemeIndex){
++containerIndicator %= 2;
unknownValues = threeDimensionalContainers[containerIndicator];
switch (schemes[schemeindex][stepInSchemeIndex]){

case 0 : //
// Crank-Nicolson step in D1 to be placed here.
//

break;
case 1 : //

// Crank-Nicolson step in D2 to be placed here.
//

break;
case 2 : //

// Crank-Nicolson step in D3 to be placed here.
//

break;
}
knownValues = threeDimensionalContainers[containerIndicator];

}
}

//
// Assuming that the grid levels are stored in the three one-dimensional vectors x1Values[], x2Values[], and
// x3Values[], and that the spot coordinates are given by x1, x2, and x3, and that we have already asserted that
// (x1,x2,x3) is inside the grid, we interpolate the solution at (x1,x2,x3) from the grid values.
//
for (i=0;x1Values[i]<x1;++i); for (j=0;x2Values[j]<x2;++j); for (k=0;x3Values[k]<x3;++k);

const double p1 = (x1-x1Values[i-1])/(x1Values[i]-x1Values[i-1]), q1 = 1 - p1;
const double p2 = (x2-x2Values[j-1])/(x2Values[j]-x2Values[j-1]), q2 = 1 - p2;
const double p3 = (x3-x3Values[k-1])/(x3Values[k]-x3Values[k-1]), q3 = 1 - p3;

//
// Below, we assume that an object v of class ThreeDimensionalContainer allows you to retrieve
// the value at the (i,j,k) grid coordinates by the use of the notation v(i,j,k).
//
const ThreeDimensionalContainer &v = *knownValues;
//
// Trilinear interpolation.
//
const double solution = p1*p2*p3*v(i,j,k) + p2*q1*p3*v(i-1,j,k) + p1*q2*p3*v(i,j-1,k) + q1*q2*p3*v(i-1,j-1,k)

+ p1*p2*q3*v(i,j,k-1) + p2*q1*q3*v(i-1,j,k-1) + p1*q2*q3*v(i,j-1,k-1) + q1*q2*q3*v(i-1,j-1,k-1);
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