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1 Introduction

In a generalised notation, the objective of any calibration procedure, is to find a solution to the
multidimensional, non-linear root-finding problem

f(x) = 0 (1)

for f ∈ Rm andx ∈ Rn. Frequently, the problem is overdetermined, i.e.m > n, and only a best
fit can be found that minimises|f(x)|where|·| is chosen to be a suitable vector norm. Examples
for multidimensional fitting algorithms are straight forward Newton-Raphson, variable metric
methods such as the Broyden-Fletcher-Goldfarb-Shanno algorithm, and nonlinear least squares
procedures such as the Levenberg-Marquardt or the NL2SOL methods [PTVF92, DGW81].

On other occasions, though, the problem (1) can be underdetermined, i.e.m < n, due
to the fact that, for instance, a model that is to be calibrated effectively allows for a much
larger number of calibration parameters to be varied than there are calibration instruments. An
example for this is the calibration of the Libor market model of interest rates.

Wheneverm < n, the result of any algorithm used to solve (1) can be highly depend on the
initial guess, and can be undesirably sensitive to small changes in any of the parameter that are
part of the functional equationf(x) = 0 but are not subject to the fitting procedure. In this case,
the solution is considered to be not sufficientlyrobustor stable. The consequence of this for the
calibration of a derivatives pricing model is that hedge ratios, if computed via re-calibration of
the model, have unacceptably large noise levels and become practically useless.

A remedy for the lack of stability of the numerical solution to (1) is to amend the main
problem by the introduction of a (usually somewhat idealised) reference point, and certain pref-
erence conditions. Typically, the reference point is also given as the initial guess forx in the
subsequent numerical algorithm, and is denoted byxreference. The amendment of (1) is then given
by the task to solve (1) whilst trying to minimise the preference norm

p(x) :=
1

2
· x> · S · x +

1

2
· (x− xreference)

> · (x− xreference) (2)

for some symmetric1 preference structure matrixS.

1This is no loss of generality since any matrix can be decomposed into the sum of a symmetric matrixS and
an asymmetric matrixA, and for anyx we havex> · (S + A) · x = x> · S · x sincex> ·A · x = 0.
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2 Newton-Raphson subject to Lagrange multiplier conditions

Let us denote the Jacobian off asJ ∈ Rm×n, i.e.

J(x) :=
(
∇x · f>

)>
, (3)

which means that the(h, i)-element ofJ is given by the partial derivative of theh-th element of
f with respect to thei-th element ofx: jhi = ∂xi

fh. Thek-th step of a Newton-Raphson itera-
tion that is to take us fromx(k) to x(k+1) must satisfy the Newton-Raphson stepping equation

Jk ·
(
x(k) − x(k+1)

)
= fk (4)

or, equivalently,

εk

(
x(k+1)

)
= 0 (5)

with

Jk := J(x(k)) (6)

fk := f(x(k)) (7)

εk

(
x(k+1)

)
:= Jk · x(k+1) − Jk · x(k) + fk . (8)

The core idea of the stabilised Newton-Raphson algorithm is that each step, instead of being
determined by the solution of (5), is to find the vectorx(k+1) that minimises the modified pref-
erence norm2

p̃(x(k+1)) :=
1

2
· x(k+1)> ·M · x(k+1) − x(k+1)> · xreference+ ε>k

(
x(k+1)

)
· λk (9)

with M := S + 1 in a way that is locally independent onλk, i.e. subject to

∇λk
· p̃(x(k+1)) = 0 . (10)

This approach is, of course, the method of Lagrange multipliers to incorporate affine constraints
on the minimisation of a nonlinear objective function, and the constraint (10) is identical to the
Newton-Raphson step condition (5). Minimising (9) subject to (10) is thus equivalent to the
solution of the system

M · x(k+1) = xreference − J>k · λk (11)

Jk · x(k+1) = Jk · x(k) − fk . (12)

In the following, we require that the matrixM ought to be positive definite3, which is essentially
equivalent to the assumption that the added preference structure conditions contained in the
original matrixS are not mutually exclusive. We can thus solve (11) for the next guess:

x(k+1) = M−1 · xreference − M−1 · J>k · λk (13)

2We have subtracted the irrelevant constant termx>reference· xreference.
3 It is possible to derive a stabilised multidimensional root finding algorithm without the requirement forM

to be positive definite. In that case, however, a singular value decomposition ofJ>J has to be performed which
means that the method cannot be used in practice when the number of entries in the vectorx is very large.
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In order to findλk, we definer := M−1 · xreferenceand substitute the above formal solution for
x(k+1) back into (12):

Gk · λk = Jk · (r − x(k)) + fk (14)

with

Gk := Jk ·M−1 · J>k , Gk ∈ Rm×m (15)

Sincem is typically much smaller thann, and since it is just possible that the set of calibration
instruments is nearly singular, it is advisable to solve equation (14) by the aid of a singularity-
safe method such as the Moore-Penrose method [Alb72]. Also, sincen can potentially be a
large number, direct calculation ofM−1 is to be avoided. This is possible sinceM−1 only ever
appears in combination withJ>k or xreference in the above equations. We thus defineH>

k as the
solution of

M ·H>
k = J>k (16)

which means that

Gk := Jk ·M−1 · J>k . (17)

The solution of thek-th iteration is now given by

x(k+1) = r − H>
k · λk . (18)

Note that thek-th increment inx, i.e.∆x(k) := x(k+1) − x(k) is given by

∆x(k) =
(
1−M−1 · J>k ·G−1

k · J
)
·
(
r − x(k)

)
− M−1 · J>k ·G−1

k · fk (19)

and that the change in the objective function vector∆fk := fk+1 − fk is, to first order, given
by

Jk ·∆x(k) = Jk ·
(
1−M−1 · J>k ·G−1

k · Jk

)
·
(
r − x(k)

)
− Jk ·M−1 · J>k ·G−1

k · fk

=
(
1− Jk ·M−1 · J>k ·G−1

k

)
· Jk ·

(
r − x(k)

)
− Jk ·M−1 · J>k ·G−1

k · fk

=
(
1−Gk ·G−1

k

)
· Jk ·

(
r − x(k)

)
− Gk ·G−1

k · fk . (20)

The notationG−1
k hereby stands for the Moore-Penrose inverse ofGk which is defined even

when the symmetric matrixGk has zero eigenvalues. The interpretation of the decomposi-
tion (19) is as follows: First, in order to obtain the increment∆x(k) that will take us fromx(k)

to x(k+1), computeminimum reference bias step

∆x
(k)
minimum bias = M−1 · J>k ·G−1

k · fk . (21)

Then, take the difference vector between the preference-corrected referencer andx(k), and
project it such that the remaining projection represents a move as closely as possible to the
preference-corrected referencer whilst not violating the Newton-Raphson condition (5) by
means of projection onto the kernel of the Newton-Raphson step operator

(
M−1 · J>k ·G−1

k

)
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applied to therangeof
(
r − x(k)

)
underJk. In other words, imagine we were to simply add(

r − x(k)
)

to the minimum bias step∆x
(k)
minimum bias. If the minimum bias step moves us to an up-

dated guess for which the objective vector is identically zero, i.e. if∆x
(k)
minimum bias, moves us to a so-

lution of the calibration problem, then, to first order, the addition of
(
r − x(k)

)
would mean that

fk+1 ' Jk ·
(
r − x(k)

)
which in turn would mean that, thereafter, we have to take another step

to compensate. This subsequent step, though, to first order, would start with the minimum bias
componentM−1·J>k ·G−1

k ·fk+1 which in turn would be, to first orderM−1·J>k ·G−1
k ·Jk·

(
r − x(k)

)
.

Thus, instead of adding
(
r − x(k)

)
to the minimum bias step in thek-th iteration, we only add

the projection of
(
r − x(k)

)
that will not4 give rise to the need of additional corrections in the

next step, i.e.
(
1−M−1 · J>k ·G−1

k · Jk

)
·
(
r − x(k)

)
. It is, incidentally, easy enough to see that

Pk := M−1 · J>k ·G−1
k · Jk is a projection operator, i.e. satisfiesP l

k = Pk for any positive integer
l, and thus(1− Pk) is also a projection operator, whence one may say:a stabilised Newton-
Raphson step consists of the minimum bias increment that moves the current iteration point
towards a solution of the nonlinear problem satisfying the given preference structure conditions
as closely as possible, plus the projection of the current distance to the preference-structure
corrected reference point onto the kernel of the Newton-Raphson step operator.

In practice, the complete step (19) may easily move the current point outside the range
within which the linear approximation that is at the heart of the Newton-Raphson method is
valid. This may happen for two reasons. Firstly, the projection of

(
r − x(k)

)
onto (1 − Pk)

may be very large due to the fact that the current point is a long way away from the preference-
structure corrected reference pointr. This happens when calibration can only be achieved at
a considerable distance fromr. In this case, it is advisable, if the iterationx(k) to x(k+1) did
not succeed in an improvement of the chosen error norm forf(x(k+1)), to reduce the size of
the contribution in the direction towardsr in a binary nesting loop until either an improvement
of f(x(k+1)) overf(x(k)) has been achieved, or until the binary nesting size is below machine
precision. Secondly, the miminum bias increment itself may be too large due to the Newton-
Raphson step operator being nearly singular or due to the fact that the current point is a long way
from calibration. Thus, if the minimum bias step alone still does not lead to an improvement
of |f |, it may be necessary to carry out a secondary binary nesting to scale down the step size
along∆x

(k)
minimum biasuntil an improvement in the objective function can be found. Naturally, if this

also fails, the fitting procedure must terminate and return the current pointx(k).
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