
Splitting the core

Peter J̈ackel∗

First version: 10th October 2004
This version: 21st August 2005

The introduction of quoted prices for tranches of credit
default obligations such as the Dow Jones iTraxx cre-
ated the need for calibration of all CDO models to mar-
ket observable figures. Whilst previously the market par-
ticipants were used to estimating correlation figures and
then simply computing the value of a new structure using
their preferred analytical or numerical procedure, there
is now a need to fit any remaining free parameters in the
model to match the value of relevant hedge instruments.
The most common approach for the pricing of basket
credit derivatives is probably the connection of individ-
ual default time distributions with a copula based on one
or more common factors. In this case, the calculation of
the loss distribution can be decomposed into a sequence
of orthogonal quadratures [Vas87, Li00, HW03]. Specif-
ically, at the heart of the procedure is a variateyi that is
composed of the sum of independent factors:

yi =
nf∑

k=1

xkaik + εi . (1)

If we choose the distributions of the systemic factor vari-
ablesxk and the idiosyncratic risk factorεi such that we
know the law ofyi, the calculation of the time-discretised
loss distribution can be implemented semi-analytically.
When we make the simplifying assumption that all cor-
relation coefficients are the same, say%, and that there
is only one systemic factor, all the coefficientsai must
be equal to

√
%, thus resolving any ambiguity. This

method has now become commonplace in the quotation
of correlation numbers for baskets whose composition
and whose constituents’ individual credit default swap
rates are quoted on indices. As things go in the deriva-
tives business, the market has evolved further and it has
been found that a different correlation figure% is needed
for any individual tranche of a CDO [McG04]. Several
mechanisms have been suggested to match the market-
observedbase correlationskew, but in this note we want
to focus on the concept ofcorrelation dispersion, i.e. we
want to be able to use a correlation matrix with a realis-
tic interdepence structure as opposed to the flat correla-
tion assumption in the straight-forward base correlation
methodology. Gregory and Laurent [GL04] consider a
structure built from groups specifying intra- and inter-
group correlation coefficients. Perhaps more generally,
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Andersen, Sidenius, and Basu [ASB03], use an iterative
procedure that requires an eigensystem decomposition of
a matrix of the same size as the correlation matrix in
each step. Since the number of underlying names for
CDO structures, and even more so for so-called CDO2

derivatives, can be rather large indeed, the iterative pro-
cedure can be comparatively time consuming, even when
we restrict ourselves to the use of a single common fac-
tor. This is primarily due to the fact that the computa-
tional expense of the eigensystem calculation of a matrix
of sizen× n grows likeO

(
n3

)
.

The iterative procedure shown in [ASB03] can be
summarised as follows. We wish to find a matrixA ∈
Rn×m with m < n such that the objective function given
by the Frobenius norm of the difference between the tar-
get correlation matrixC andAA>, i.e.

χFrobenius = Tr
[(

C −AA>) (
C −AA>)>]

=
∑

i,j,i 6=j (cij −
∑m

k=1 aikajk)
2 , (2)

is minimal. Starting with an arbitrary diagonal matrix
F (0) ∈ Rn, for instance by setting all entries ofF (0) to
zero, we iterate

• Find the eigensystemS(i) and diagonal eigenvalue
matrixΛ(i) of

(
C − F (i)

)
such that

C − F (i) = S(i) · Λ(i) · S(i)> . (3)

• Set

A(i) := S(i) ·
√

Λ(i)
m (4)

whereΛ(i)
m is constructed fromΛ(i) by overriding

all but them largest eigenvalue entries with 0.

• Set

F (i) := 1− diag
[
A(i) A(i)>

]
. (5)

until ||F (i+1) − F (i)|| is sufficiently small.
It is noteworthy to observe that the iterative projection

method above does not guarantee that the convergence
values of the matrixA has row vectors that are all less
than or equal to one in their Euclidean norm. In fact, a
simple example such as the matrix 1 1/5 2/5

1/5 1 3/5
2/5 3/5 1

 (6)

1



that is to be projected onto a single column weighting
matrix (m = 1) will already lead to one of the three
loading factors to be greater than one. Whenever this
happens, typically, the globally optimal fit satisfying the
constraint that the Euclidean norms of the row vectors
of A are less than or equal to 1, has at least one of the
row vectors of norm exactly 1. In that case, the iter-
ative procedure must be stopped in the(i + 1)-th step
if the largest row vector norm ofA(i+1) exceeds 1, i.e.
if maxj=1...m

∑m
k=1(a

(i+1)
jk )2 > 1. In practice, it then

usually suffices to use a linear interpolation betweenA(i)

andA(i+1) such that the longest row vector(s) of the in-
terpolated matrix is(are) exactly of unit length. This can
be done by setting

αj :=
m∑

k=1

(a(i+1)
jk )2 βj :=

m∑
k=1

a
(i+1)
jk a

(i)
jk (7)

γj :=
m∑

k=1

(a(i)
jk )2 rj := αj − 2βj + γj (8)

pj := 2
βj − γj

rj
qj :=

γj − 1
rj

(9)

sj :=

√
1
4
p2

j − qj −
1
2
pj s := min

j=1...m
sj (10)

and using the interpolation

A = s ·A(i+1) + (1− s) ·A(i) (11)

as the final result of the iteration.
In the very common special case that we seek a sin-

gle common factor weighting vector, i.e.m = 1, there is
a remarkably simple alternative to construct an approxi-
mate common factor loading vector. In fact, in this sit-
uation, we can find a one-factor decomposition vectora
analytically if we use a different penalty function. In-
stead of the Frobenius norm of the difference between
the target correlation matrixC andaa>, we use the log-
arithmic objective function

χLogarithmic Frobenius =
∑

i,j,i 6=j

(ln cij − ln aiaj)
2 . (12)

The minimisation condition

∂ak
χLogarithmic Frobenius = 0 (13)

for all k = 1..n then leads to the linear system

(n− 1) ln ak +
∑
i6=k

ln ai = κk (14)

with
κk :=

∑
i6=k

ln cik . (15)

The solution of (14) is

ln ak =
1

n− 2

(
κk −

∑n
i=1 κi

2(n− 1)

)
(16)

which presents our main result. In numerical tests with
realistic correlation matrices, we found that the construc-
tive formula (16) produces correlation matrix approxi-
mations that are remarkably close to those one can ob-
tain from the iterative approach given in [ASB03] in the
one-factor case. Unlike the iterative method necessary
when we use the Frobenius norm, though, the compu-
tational effort does not grow likeO

(
n3

)
, but only like

O
(
n2

)
which makes a major difference for baskets with

n ≈ 300–500 or even higher.
The reader may have noticed that there is no general

guarantee that the solution given by (16) producesak that
are all less than or equal to one. A violation of the re-
quirementak ≤ 1 is, though, for large1 n, only possible
when the square2 of the geometric average of the entries
of one row of the correlation matrix exceeds the geomet-
ric average of all the correlation coefficients. Since this
condition is likely to clash with the fact that the corre-
lation matrix has to be positive semi-definite, it is rarely
incurred in practice. The solution (16) does, however,
not allow for negativeak which is usually desirable in
the context of basket credit derivatives pricing.

References
[ASB03] L. Andersen, J. Sidenius, and S. Basu. All your hedges in one

basket.Risk, November:67–72, 2003.

[GL04] J. Gregory and J.-P. Laurent. In the core of correlation.Risk, pages
87–91, October 2004.

[Hig02] N. J. Higham. Computing the Nearest Correlation Matrix -
A Problem from Finance. IMA Journal of Numerical Analy-
sis, 22:329–343, 2002.www.ma.man.ac.uk/˜nareports/
narep369.pdf .

[HW03] J. Hull and A. White. Valuation of a CDO and an n-th to Default
CDS Without Monte Carlo Simulation. Working paper, University
of Toronto, 2003. www.rotman.utoronto.ca/˜hull/
DownloadablePublications/HullWhiteCDOPaper.
pdf .

[Li00] D. X. Li. On Default Correlation: A Copula Approach.Journal of
Fixed Income, 9:43–54, March 2000.

[McG04] L. McGinty. Introducing Base Correlation. Working paper, JP
Morgan, March 2004.www.wilmott.com/attachments/
IntroducingBaseCorrelations.zip .

[Vas87] O. A. Vasicek. Probability of loss on loan portfolio. Working
paper, KMV, 1987. www.moodyskmv.com/research/
whitepaper/Probability_of_Loss_on_Loan_
Portfolio.pdf .

1 For smalln, it suffers the same problems as the iterative pro-
jection method. In fact, for the example (6), it gives a solution with
a3 > 1 that is almost identical to the convergence solution of the
iterative projection method without the early termination (11).

2actually, the(2 · n−1
n

)-th power which is almost the square for
largen

2
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