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Abstract

We assess the effect of an implied volatility skew for
an FX rate on quanto forwards and quanto options
of an asset that itself is subject to an implied volatil-
ity skew using a simplistic double displaced diffusion
model.

1 Introduction

Quanto contracts are financial derivatives whose pay-
out currency differs from the natural denomination of
their underlying financial observable. Their purpose
is to provide exposure to the performance of the ob-
servable without exposure to a currency conversion
risk. Simple examples include forward contracts or
options on US or JPY government bonds, commod-
ity futures, or equity indices written such that the
numerical return on the underlying is paid out dir-
ectly in a different currency, without the application
of any FX conversion factor. This is equivalent to
the concept of entering into the equivalent domestic
derivative, e.g., a forward contract or option on a US
asset written in USD, with a guarantee that whatever
the payout is, it will be converted at the time of pay-
ment at an FX rate that is agreed upon at incep-
tion of the deal. Quanto contracts of vanilla nature
are traded over-the-counter in significant size. They
either are requested directly by end-investors, or are
used as hedges for components of multi-asset invest-
ment strategies and other non-vanilla derivatives.

Despite their relative importance, surprisingly
little research has been focussed on quanto derivat-
ive pricing. Whilst practitioners have gone to ex-
treme lengths in their efforts to design, implement,
and calibrate models for underlying assets in order to
accomodate, or even explain, the observable implied
volatility skew, when it comes to quanto derivatives,
even vanilla contracts tend to be valued with simple
adjustments on top of what may otherwise be a rather
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sophisticated stochastic processes for the underlying
asset.

2 Common quanto adjustments

The most commonly used quanto correction used in
practice is without doubt to modify the expected
value of the asset when quantoed, and otherwise reuse
whatever stochastic model may be in favour for the
underlying asset. In the case of correlated geometric
Brownian motion for the underlying observable and
the FX rate, it is well known that one can, by an
argument of change of measure, justify the use of a
simple adjustment for all quanto derivatives. This is
because simply replacing the forward F of the under-
lying by

F ′ = F eĉ, using ĉ = σ̂Sρσ̂QT , (1)

with σ̂S being the domestic at-the-money implied
volatility of the asset, ρ being the process correla-
tion (i.e., correlation of increments, usually estim-
ated from time series) between asset and FX rate (in
terms of value of one investor currency unit expressed
in the asset’s domestic currency), and σ̂Q being the
at-the-money implied volatility of the FX rate, takes
care of the effect of quantoing for all derivatives ex-
piring at T on this asset. Possibly primarily for reas-
ons of convenience, the quanto adjustment (1) has,
however, also been deployed as a simple forward cor-
rection irrespective of what implied volatility skew
may be observable for the underlying asset, and for
the FX rate.

When skew parametrisations are used for domestic
options on the asset in the shape of some functional
form as in

σ̂(K) = f(F,K, T, λ1, λ2, . . .) (2)

where f() could be any functional form, e.g.,
SABR [HKL02], or a volatility implied from a model
expressed in terms of an underlying martingale ob-
servable such as Heston [Hes93], CEV [CR76], dis-
placed diffusion [Rub83], etc., then, in practice, the
convential approach tends to be to retain all of the
parameters λ1, λ2, . . . , exactly as they are used in the
domestic currency. Regarding the effective forward,
there are two common schools of thought:-
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a) Determine an effective volatility coefficient σ̂ ex-
actly as in (2) using the forward as if the option
was entirely domestic. Subsequently, price the
quanto option with Black’s formula replacing the
forward F by F ′ as given in (1). This approach,
in essence, transfers the domestic skew unaltered
to quanto options, whence we refer to it as
the Domestic-Forward-ATM-Quanto method, or
DFAQ for short. The term “ATM-Quanto”
refers to the fact that the (conventionally ap-
proximated) quanto forward F ′ used in the final
pricing stage is approximated as the domestic
forward that is adjusted using at-the-money im-
plied volatilities.

b) Determine the effective volatility coefficient dir-
ectly with the quanto-adjusted effective forward
F ′ as given in (1). Subsequently, price the
quanto option with Black’s formula using the
same adjusted forward F ′. In this article, we
refer to this approach as the Quanto-Forward-
ATM-Quanto, or QFAQ for short.

In this article, we attempt to shed some light on
the question how well these simplistic quanto adjust-
ments perform when we go beyond the Black-Scholes
setting, when even one of the simplest of all self-
consistent skew-generating models is used. In our
investigation, we use an extremely light-weight model
for the skew in the asset and the FX rate in aid of
attaining closed form solutions for vanilla quanto op-
tions which we use for comparison. Whilst a very
simple model is clearly not enough to permit a gen-
eral statement about the quanto effect for all models,
we believe it suffices to give a first order indication
as to the quality of conventional quanto adjustments.
This entails a closer look at the exact quanto for-
ward correction, which turns out to be model depend-
ent. Further, we attempt to give an indication of the
quanto effect on the model skew parameters. Whilst
the analysis presented here is, admittedly, predicated
on very simple modelling ideas, it highlights that, in
general, it is necessary to adjust the full implied volat-
ility skew when an asset is quantoed into another cur-
rency.

3 Exact quanto valuation

Assume a financial observable S is denominated in
currency X. Assume that an investor, whose nat-
ural home currency is Y, wishes to participate in
the asset’s performance between today and some fu-
ture time horizon T , but wishes not to be exposed
to any currency risk. This investor may be inter-
ested in what is known as a quanto option that pays

(θ · (ST −K))+ directly in currency Y, with θ = +1
for calls and θ = −1 for puts.

Denote Q as the value of one currency unit of Y
expressed in currency X, i.e., as the quotient Y/X. To
the seller of a quanto option, the net present value of
the contract, expressed in units of currency X (e.g.,
for reasons of availability of options to hedge the ex-
posure to S), is

Ṽ X(t) = P (t, T ) · EX[(θ(ST −K))+ ·QT ] (3)

with P (t, T ) representing today’s value of a zero
coupon bond paying at T , and the expectation be-
ing taken in an X-denominated T -forward measure.
Naturally, we can translate an X-denominated net
present value into a Y-denominated net present value
by spot FX conversion:

Ṽ Y(t) =
Ṽ X(t)

Qt
= P (t, T ) · EX

[
(θ(ST −K))+ ·

QT
Qt

]
.

(4)

Equations (3) and (4) are model-independent.

4 Displaced Diffusion

The displaced diffusion model [Rub83] is a convenient
device to generate a skewed implied volatility pro-
file when explicit control over the curvature, i.e., the
actual smile, is of secondary importance. It allows
for vanilla option valuation formulae in terms of the
Black-Scholes pricing formula with adjusted input
parameters which makes it exceptionally easy and ef-
ficient in practical applications. Its main drawbacks
are that the curvature of the implied volatility profile
it generates is implicitly determined by its skew, and
that the domain of the distribution it generates for
the underlying financial observable does not begin at
zero, as for the lognormal distribution, but at an off-
set, which is negative when the skew is negative. In
other words, when calibrated to a typical equity or
interest rate skew (at the money), it permits for the
underlying observable to attain negative values. This
is clearly a deficiency in a variety of circumstances.
Nevertheless, it has become a favourite of many re-
searchers and practitioners whenever an assessment
of the impact of a mere skew of implied volatilities
on a specific issue of financial engineering is required.

In the simple case of constant parameters, the dis-
placed diffusion model can be summarised as the
unique martingale process

S(t) = S(0) ·
(

e−
1
2σ

2
Sβ

2
St+σSβSW (t) − (1− βS)

)/
βS (5)

for a financial observable S(t) with W (t) being a
standard Wiener process. European vanilla option
prices can be calculated by a simple transformation
of variables and are given by

V±1(S,K, σ, β, T ) = B±1(
1
βS,K + (1−β)

β S, σβ, T ) (6)
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with the Black-Scholes formula

Bθ(S,K, σ̂, T ) = θ ·
[
S · Φ

(
θ · (xς̂ + ς̂

2 )
)
− (7)

K · Φ
(
θ · (xς̂ −

ς̂
2 )
) ]

x = ln(S/K) (8)

ς̂ = σ̂ ·
√
T (9)

where we have omitted all discounting. At the money,
the pricing formula (6) becomes

V+1(S,K, σ, β, T )|K=S = S ·
(

2Φ
(
σβ
√
T

2

)
− 1
)

1
β (10)

for call options. We can compare this with the Black-
Scholes call option price at the money given by

B+1(S,K, σ̂(K), T )|K=S = S ·
(

2Φ
(
σ̂atm

√
T

2

)
− 1
)

(11)

with σ̂atm = σ̂(S). This allows for an explicit solution
for the at-the-money Black implied volatility

σ̂atm = 2√
T

Φ−1
(

1
βΦ
(
σβ
√
T

2

)
− (1−β)

2β

)
. (12)

For calibration purposes, the inverse solution is also
of practical use:

σ = 2
β
√
T

Φ−1
(
βΦ
(
σ̂atm

√
T

2

)
+ (1−β)

2

)
. (13)

Of further interest is that we can derive from this and

d
dKB+1(S,K, σ̂(K), T ) = d

dKV+1(S,K, σ, β, T ) (14)

the at-the-money Black implied volatility skew solely
in terms of β and the at-the-money Black implied
volatility itself:

d
dK σ̂(K)

∣∣
K=S

= (β−1)
2

√
2π

S
√
T

[
2Φ
(
σ̂
√
T

2

)
− 1
]

e
σ̂2T
8 (15)

= (β−1)
2

σ̂
S

(
1 + σ̂2T

12 + σ̂4T 2

240 + · · ·
)
, (16)

where σ̂ = σ̂atm on the right hand side. Equa-
tions (13) and (15) enable us to calibrate a displaced
diffusion model to a given at-the-money volatility and
skew with great ease.

5 Displaced Diffusion Quanto
Skew

We assume a displaced diffusion model for both the
underlying asset and the foreign exchange rate pro-
cess in the domestic martingale measure of the asset
(currency X) as discussed in section 3. We note that
this, in general, prohibits us from explicitly changing
measure to the investor’s domestic measure (currency
Y) since the reciprocal foreign exchange rate 1/Q is
not a measurable process as Q can attain zero and
even become negative when β < 1. In this setting,
the undiscounted quanto option price (4) is given by

Ṽ Y
±1(S0,K, σS , βS , σQ, βQ, ρ, T )

= EX

[
(±(ST −K))+ ·

QT
Qt

]
(17)

= EX

[(
±
(
S0

βS
e−

σ2Sβ
2
ST

2 +σSβSWS(T ) − 1−βS
βS

S0 −K
))

+

(18)

·
(

e−
σ2Qβ

2
QT

2 +σQβQWQ(T ) − (1− βQ)

)/
βQ

]
= 1

βQ
B±1

(
1
βS
S0ec̃,K + (1−βS)

βS
S0, σSβS , T

)
− (1−βQ)

βQ
B±1

(
1
βS
S0,K + (1−βS)

βS
S0, σSβS , T

)
(19)

with
c̃ = ρσSβSσQβQT (20)

wherein ρ represents the correlation of WS(T ) and
WQ(T ). The par strike for a quanto forward contract
can equally be computed:

F̃ = S0 ·
[
1 +

(
ec̃ − 1

)
/(βSβQ)

]
. (21)

Armed with this information, we can attempt to find
matched quanto displaced diffusion parameters whose
purpose it is to enable the (approximate) valuation
of Y-denominated options on the underlying asset
without the need for a combined asset-FX model.
For standard geometric Brownian motion, we do of
course know how to do this change of measure exactly
— the volatility information of S in the Y measure
is the same as in the X measure, but the par forward
changes to the quanto forward. For other models,
the change of measure results in more complicated
deformations of the quantoed asset distribution. In
other words, not just the forward changes, but the en-
tire implied volatility profile changes, too. Here, we
try to approximate the quanto skew with the same
form of parametrisation as the domestic skew: the
quanto forward F̃ which is already given in equa-
tion (21), a quanto displaced diffusion volatility σ̃,

and a quanto skew parameter β̃. The hope is that,
given the right choice of the quanto skew parameters
σ̃ and β̃, we can use the vanilla displaced diffusion
formula (6) to approximate quanto options, i.e.,

V±1(F̃ ,K, σ̃, β̃, T ) ≈ Ṽ Y
±1(S0,K, σS , βS , σQ, βQ, ρ, T ) .

(22)

For this purpose, we match the call option price and
the skew at the quanto forward. This will ensure that
at least for options struck near the quanto forward,
we will have good agreement. We shall see later how
far the approximation can be used. For this, in addi-
tion to formula (19), we need

d
dK Ṽ

Y
+1 (S0,K, σS , βS , σQ, βQ, ρ, T )

=
1−βQ
βQ

Φ
(
ξ
ς −

ς
2

)
− 1

βQ
Φ
(
ξ+c̃
ς −

ς
2

)
(23)

with

ξ = − ln
(

1− βS + βS
K
S0

)
(24)

ς = σSβS
√
T . (25)
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Using the abbreviations

ṽ := Ṽ Y
+1 (S0,K, σS , βS , σQ, βQ, ρ, T )

∣∣∣
K=F̃

(26)

κ̃ := d
dK Ṽ

Y
+1 (S0,K, σS , βS , σQ, βQ, ρ, T )

∣∣∣
K=F̃

(27)

we can now express our objective as solving

ṽ =
F̃

β̃

[
2Φ
(

1
2 σ̃β̃
√
T
)
− 1
]

(28)

κ̃ = −Φ
(
− 1

2 σ̃β̃
√
T
)

(29)

for β̃ and σ̃. The solution is:-

β̃ = (1 + 2κ̃)F̃ /ṽ

σ̃ = 2 Φ−1
(

1
2 (1 + β̃ṽ/F̃ )

)/
(β̃
√
T ) .

(30)

6 Examples

We now give some examples for the quality of the
quanto skew approximation (30) for the double dis-
placed diffusion setup. Before we look at the quality
of our approximation, we start off by highlighting
a fact that is unfortunately far too easily overlooked
when dealing with quanto skew parametrisations and
approximations.

6.1 No FX skew

This case is encompassed by our double displaced dif-
fusion framework when βQ = 1. It is well known
that under these circumstances it is indeed possible
to change measure to the investor currency Y since
the FX rate is lognormally distributed and cannot at-
tain zero (or even become negative). Given that this
is arguably the simplest quanto framework that goes
beyond the skew-free pure Black-Scholes model for
the underlying asset and the FX rate, one might hope
that industry-practice conventional quanto adjust-
ments hold for this case exactly. We show in figure 1
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Figure 1: Implied volatilities as a function of strike K for S0 =
1, T = 2, βS = 1

16
, σS = 48.98%, βQ = 1, σQ = 20%, and

ρ = −50%.

the following implied volatility curves in comparison:-

DFAQ — for this, we use directly the simple displaced
diffusion formula (6). Note that this is by construc-
tion identical to the domestic skew.

QFAQ — this is the approach of replacing the for-
ward and reusing the domestic parameters, i.e.,
V (F ′,K, σS , βS , T ), as explained in section 2.

exact — this is formula (19).

approximate — this is the approximation
V (F̃ ,K, σ̃, β̃, T ) with (21) and (30).

QFAQ+ — this is V (F ′,K, σS
S0

F ′ , βS , T ).

All data are expressed in terms of implied volatilit-
ies using the respectively exact forward as reference.
This is to mean that what is shown for any of the
price curves is the unique solution of

vθ = Bθ (F,K, σ̂θ(vθ, F,K), T ) (31)

for σ̂ (which thereby implicitly becomes a function
of vθ, F , and K), with vθ being the respective price
(or approximation) and F the par forward strike that
is consistent with the respective price formula. Spe-
cifically, we have:-

DFAQ — F = F ′1

QFAQ — F = F ′

exact — F = F̃

approximate — F = F̃
QFAQ+ — F = F ′

Since we are using the exact forward as reference for
implied volatilities, call-put parity is preserved, and it
is mathematically irrelevant whether we use θ = +1
or θ = −1 (though we may have chosen to always
compute values on out-of-the money options in or-
der to minimize numerical truncation). Note that
the odd choice for σS for the data in figure 1 was
made such that the domestic skew is calibrated to
σ̂S = 50% at K = S0 using equation (13). As a final
note of form before we discuss the poignant details
of the figure, we mention that we are not precisely
comparing like for like in the figure since we are us-
ing different reference forwards for the calculation of
implied volatilities. With the exception of the DFAQ
curve, the difference is small since, for this example,
F ′ = 0.904837 and F̃ = 0.902336 are very close.

The most striking effect that can be seen in figure 1
is that whilst the implied volatility skew of the exact
quanto curve appears to be shifted up, or to the right,
whichever way one prefers to see it, the implied volat-
ility skew of the QFAQ quanto adjustment appears
to be shifted down (or left). The discrepancy for
this, admittedly, or perhaps arguably2, exaggerated

1Corrected on 2016-06-04 from S0 to F ′, which makes this
consistent with the earlier statement “Note that this is by con-
struction identical to the domestic skew”.

2A level of 50% for a two year horizon may have been con-
sidered exaggerated for equities in the pre-2008 era, but since
then much higher levels of implied volatility have been ob-
served, if only temporarily.
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example is about 5% in terms of implied volatility,
which is clearly not negligible. The explanation for
this significant error in the conventional QFAQ ap-
proach lies with the fact that we are dealing with a
pricing framework that belongs to the family of local
volatility models. When we use the QFAQ quanto
adjustment, we tend to focus on forward prices, and
too easily forget that we are effectively dealing with
an approximation for a (possibly stochastic) drift in-
troduced by the quanto term. Simply absorbing the
drift in an (approximately) adjusted forward, which
is then used in a formula of local volatility type has
the side effect that we inadvertently change the abso-
lute level of volatility for the process of the underly-
ing. To lowest order, one can see this if we compare
the initial absolute volatility level of the actual as-
set process in measure Y, which is σS · S0, whereas
the QFAQ adjustment implies that the asset process
has initial absolute volatility close to σSF

′. As evid-
ence for this effect, we included in figure 1 the curve
marked as QFAQ+ where the used process volatility
has been adjusted by the factor S0

F ′ to compensate for
the otherwise incurred loss of volatility. As we can
see in figure 1, this first order adjustment does indeed
get volatility levels almost right. Unfortunately, this
simplistic compensation only works for moderate ma-
turities and choices of |βS | � 1, i.e., when the model
is nearly Bachelier. As a side note, we mention that
it can easily be shown that in this case of βQ = 1
the approximate pricing curve is identical to the ex-
act solution, which is of course a desirable feature to
have for the approximation, and this is reflected in
the data.

Since, as we mentioned, we are not exactly compar-
ing like for like in figure 1, we also show a comparison
in terms of actual option price in figure 2. The data
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Figure 2: Relative option time value differences for figure 1.

in the figure are relative differences of the time value
of the option, as priced with the respective meth-
odology, when compared with the exact price. For
instance, the curve marked “DFAQ” corresponds to

vDFAQ
θ −(θ·(F̃−K))

+

vexactθ −(θ·(F̃−K))
+

− 1

with the actual price vDFAQ
θ computed as explained

earlier in this section. Note that the apparent kink
in the relative option time value difference curves is
no error: it indicates the location of the exact quanto
forward F̃ . We can see in this figure that even in this
very simple case of a pure local volatility smile that
is consistent with an analytically tractable model,
alas, both of the conventional quanto adjustment ap-
proaches discussed here give prices that, near the ef-
fective money, are about 5% different from the exact
price. We can also see that the QFAQ+ approach ap-
pears to eliminate most of the error incurred due to
the mis-estimation of initial absolute volatility that
is inherent in the QFAQ approach. We hasten to add
that this mis-estimation is particularly strong in the
case of a setting that is consistent with a local volatil-
ity approach. When the underlying model ideas that
give rise to the domestic smile are closer to a float-
ing smile (also known as sticky delta) approach, the
QFAQ methodology may be more natural than the
DFAQ approach, though, this remains to be properly
investigated. Our final observation regarding figure 2
is that the approximate method shows zero relative
difference to the exact price, which is of course con-
sistent with this method being identical to the exact
pricing method for βQ = 1 as was mentioned earlier.
Since we consider the alternative representation of
the data in terms of relative option time value errors
a useful complement to the depiction of the resulting
implied volatilities, we will from here on accompany
all diagrams by this second view without further dis-
cussion in the text.

The effect we wanted to highlight in this section
is thus: when dealing with quanto skew transforma-
tions, there is an intrinsic risk that by focussing on
the quanto adjustment, which is often done in terms
of an adjusted forward, we forget that the implied
volatility parametrisation we use, which may be in-
tended to be consistent with a model of local volat-
ility style, incurs absolute volatility changes if we
simply adjust the forward. The displaced diffusion
model/parametrisation used in this article is not the
only one that will have this problem. It is in fact com-
mon across the whole local volatility family: CEV,
SABR, and the fully fledged non-parametric local
volatility approach [Dup94]. Even when there is no
FX skew, vanilla quanto option pricing deserves at-
tention being paid to the choice of underlying model.

6.2 Co-inclining skew

In this case, the implied volatility skew and the FX
skew lean in the same direction. We show in figure 3
the implied volatility curves for βQ = 1

16 , with oth-
erwise the same parameters as in figure 1. As we
can see, the overall picture remains the same. In fig-
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Figure 3: Implied volatilities for S0 = 1, T = 2, βS = 1
16

, σ̂S =
50% → σS = 48.98%, βQ = 1

16
, σ̂Q = 20% → σQ = 19.95%,

and ρ = −50%. F ′ = 0.9048 and F̃ = 0.9024.
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Figure 4: Relative option time value differences for figure 3.

10%

20%

30%

40%

50%

60%

70%

80%

0.3 0.4 0.5 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.3 2.6 3

DFAQ
QFAQ
exact
approximate

Figure 5: Implied volatilities for S0 = 1, T = 20, βS = 1
16

,
σ̂S = 25% → σS = 23.76%, βQ = 1

16
, σ̂Q = 20% → σQ =

19.95%, and ρ = −50%. F ′ = 0.6065 and F̃ = 0.5405.
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Figure 6: Relative option time value differences for figure 5.

ure 5, we show the extreme example where we have
increased maturity to 20 years, though we reduced
domestic at-the-money volatilities to 25%. We can
see that the discrepancies widen significantly, and
that our approximation (30) starts to break down
for very high strikes & 2.6, though, but agrees very
well with the exact solution otherwise. It should be
mentioned, however, that this breakdown is largely
caused by the fact that the underlying model, due
to its allowing for negative FX rates when βQ < 1,
in this extreme scenario, attains negative call option
prices for & 2.77. Thus, arguably, the failure of the
approximation, which is designed to disallow negative
option prices, is of no concern greater than the funda-
mental shortcoming of the chosen simplistic model to
allow for negative option prices in extreme scenarios.
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Figure 7: Implied volatilities for S0 = 1, T = 2, βS = 3
2
, σ̂S =

50% → σS = 51.42%, βQ = 3
2
, σ̂Q = 20% → σQ = 20.08%,

and ρ = −50%. F ′ = 0.9048 and F̃ = 0.9079.
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Figure 8: Relative option time value differences for figure 7.

In figures 7 and 9, we show the example of positive
skew for the underlying asset and the FX rate with
βS = βQ = 3

2 , T = 2, and ρ = −50% and ρ = 50%,
respectively. This is followed by a long dated example
with positive skew in figure 11.

6.3 Contra-inclining skew

In this case, the implied volatility skew and the FX
skew lean in opposite directions.
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Figure 9: Implied volatilities for S0 = 1, T = 2, βS = 3
2
, σ̂S =

50% → σS = 51.42%, βQ = 3
2
, σ̂Q = 20% → σQ = 20.08%,

and ρ = 50%. F ′ = 1.1052 and F̃ = 1.1163.
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Figure 10: Relative option time value differences for figure 9.
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Figure 11: Implied volatilities for S0 = 1, T = 20, βS = 3
2
,

σ̂S = 25% → σS = 27.05%, βQ = 3
2
, σ̂Q = 20% → σQ =

20.96%, and ρ = 50%. F ′ = 1.6487 and F̃ = 2.1471.
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Figure 12: Relative option time value differences for figure 11.
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Figure 13: Implied volatilities for S0 = 1, T = 2, βS = 1
2
, σ̂S =

50% → σS = 49.22%, βQ = 3
2
, σ̂Q = 20% → σQ = 20.08%,

and ρ = −50%. F ′ = 0.9048 and F̃ = 0.9047.
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Figure 14: Relative option time value differences for figure 13.
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Figure 15: Implied volatilities for S0 = 1, T = 2, βS = 1
2
, σ̂S =

50% → σS = 49.22%, βQ = 3
2
, σ̂Q = 20% → σQ = 20.08%,

and ρ = 50%. F ′ = 1.1052 and F̃ = 1.1026.
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Figure 16: Relative option time value differences for figure 15.
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Figure 17: Implied volatilities for S0 = 1, T = 2, βS = 3
2
, σ̂S =

50% → σS = 51.42%, βQ = 1
2
, σ̂Q = 20% → σQ = 19.95%,

and ρ = −50%. F ′ = 0.9048 and F̃ = 0.9047.
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Figure 18: Relative option time value differences for figure 17.
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Figure 19: Implied volatilities for S0 = 1, T = 2, βS = 3
2
, σ̂S =

50% → σS = 51.42%, βQ = 1
2
, σ̂Q = 20% → σQ = 19.95%,

and ρ = 50%. F ′ = 1.1052 and F̃ = 1.1066.

-25%

-20%

-15%

-10%

-5%

0%

5%

0.6 0.8 1 1.2 1.4 1.6

DFAQ
QFAQ
approximate

Figure 20: Relative option time value differences for figure 19.
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Figure 21: Implied volatilities for S0 = 1, T = 20, βS = 1
2
,

σ̂S = 25% → σS = 24.04%, βQ = 3
2
, σ̂Q = 20% → σQ =

20.96%, and ρ = −50%. F ′ = 0.6065 and F̃ = 0.5804.
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Figure 22: Relative option time value differences for figure 21.
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Figure 23: Implied volatilities for S0 = 1, T = 20, βS = 1
2
,

σ̂S = 25% → σS = 24.04%, βQ = 3
2
, σ̂Q = 20% → σQ =

20.96%, and ρ = 50%. F ′ = 1.6487 and F̃ = 1.6123.
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Figure 24: Relative option time value differences for figure 23.
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Figure 25: Implied volatilities for S0 = 1, T = 20, βS = 3
2
,

σ̂S = 25% → σS = 27.05%, βQ = 1
2
, σ̂Q = 20% → σQ =

19.51%, and ρ = −50%. F ′ = 0.6065 and F̃ = 0.5642.
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Figure 26: Relative option time value differences for figure 25.
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Figure 27: Implied volatilities for S0 = 1, T = 20, βS = 3
2
,

σ̂S = 25% → σS = 27.05%, βQ = 1
2
, σ̂Q = 20% → σQ =

19.51%, and ρ = 50%. F ′ = 1.6487 and F̃ = 1.6474.

Figures 13 to 27, which are for various contra-
inclining combinations of βS < 1 and βQ > 1, and
βS > 1 and βQ < 1, are explained in their respective
captions.

7 Conclusion

We have shown that the comparatively simple finan-
cial derivative contract known as a “quanto” option
requires model-dependent considerations when both
the underlying asset and the converting FX rate’s op-
tion markets exhibit implied volatility skews. This is
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Figure 28: Relative option time value differences for figure 27.

in contrast to the most commonly used practices for
the valuation of vanilla quanto options. For the spe-
cific example of a double displaced diffusion model,
we have given the explicit pricing formula, and de-
rived an analytical approximation that permits to
represent the quanto option implied volatility skew
in the same parametric setting as the domestic skew,
within this model. We have given numerical examples
for a variety of parameter combinations that appear
to be in support of the practical viability of the ap-
proximation. Notwithstanding the fact that the ana-
lysis employed a double displaced diffusion model, we
emphasize that the main result of the investigation
is that quanto options, for anything but short-dated
contracts, warrant explicit modelling for accurate pri-
cing and consistent risk managament with respect to
the underlying vanilla markets.
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