Positive semi-definite correlation matrix completion

Peter Jäckel*

First version:
This version:

Abstract

We give an intuitive derivation for the correlation matrix completion algorithm suggested in [KG06]. This leads us to a more general formula for the completion. The presented extension is positive semi-definite by construction, but we also give a simplified algebraic proof for its universal validity.

1 Introduction

Since the nature of this note is to present an extension to [KG06], we skip the general motivation and background of the problem and refer the reader to the references [KG06, Kah07].

Given a set of $2 n$ standard normal variates x_{1}, \cdots, x_{n}, and y_{1}, \cdots, y_{n}, and the constraint that the pairwise correlations

$$
\begin{align*}
\left\langle x_{i} x_{j}\right\rangle & =r_{i j} \tag{1}\\
\left\langle x_{i} y_{i}\right\rangle & =\eta_{i} \tag{2}
\end{align*}
$$

are pre-specified, we seek a completion of the as yet under-specified (auto-)correlation matrix of

$$
\begin{equation*}
z:=\left(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}\right)^{\top} \tag{3}
\end{equation*}
$$

which has the structure

$$
\left\langle z \cdot z^{\top}\right\rangle=\left(\begin{array}{cccccc}
r_{11} & \ldots & r_{1 n} & \eta_{1} & & ? \tag{4}\\
\vdots & \ddots & \vdots & & \ddots & \\
r_{n 1} & \cdots & r_{n n} & ? & & \eta_{n} \\
\eta_{1} & & ? & 1 & & ? \\
& \ddots & & & \ddots & \\
? & & \eta_{n} & ? & & 1
\end{array}\right)=\left(\begin{array}{cc}
R & B \\
B^{\top} & C
\end{array}\right)
$$

with $r_{i i}=1$.

2 Pairwise Cholesky construction

We start our intuition with the suggestion that each of the y_{i} can be represented as a linear combination

[^0]Christian Kahl ${ }^{\dagger}$

6th May 2009
10th May 2009
of x_{i} and a further standard normal variate ϵ_{i} which is independent from all the x_{j}, as given by a pairwise Cholesky decomposition:

$$
\begin{align*}
y_{i} & =\eta_{i} x_{i}+\eta_{i}^{\prime} \epsilon_{i} \tag{5}\\
\left\langle x_{i} \epsilon_{j}\right\rangle & =0 \tag{6}
\end{align*}
$$

with

$$
\begin{equation*}
\eta_{i}^{\prime}:=\sqrt{1-\eta_{i}^{2}} \tag{7}
\end{equation*}
$$

This immediately yields

$$
\begin{equation*}
\left\langle x_{i} y_{j}\right\rangle=r_{i j} \eta_{j} \tag{8}
\end{equation*}
$$

whence we choose $B:=R H$ with

$$
\begin{equation*}
H:=\operatorname{diag}\left(\eta_{1}, \cdots, \eta_{n}\right) \tag{9}
\end{equation*}
$$

as in [KG06]. Further, we have

$$
\begin{equation*}
c_{i j}=\left\langle y_{i} y_{j}\right\rangle=\eta_{i} r_{i j} \eta_{j}+\eta_{i}^{\prime}\left\langle\epsilon_{i} \epsilon_{j}\right\rangle \eta_{j}^{\prime} . \tag{10}
\end{equation*}
$$

We note that for $\left\langle\epsilon_{i} \epsilon_{j}\right\rangle=0$ we obtain the structure given in [KG06].

3 Positive semi-definiteness

Since the matrices B and C given in the previous section are derived from linear combinations of standard normal variates, the completed matrix

$$
A:=\left\langle z \cdot z^{\top}\right\rangle=\left(\begin{array}{cc}
R & B \tag{11}\\
B^{\top} & C
\end{array}\right)
$$

is by construction symmetric positive semi-definite, which we denote as

$$
\begin{equation*}
A \succeq 0 . \tag{12}
\end{equation*}
$$

However, for the sake of completeness, we provide below a simple algebraic proof.
Given two matrices $R, E \in \mathbb{R}^{n \times n}$, with $R \succeq 0, E \succeq$ 0 , we set

$$
A:=\left(\begin{array}{cc}
R & R H \tag{13}\\
H R & C
\end{array}\right)
$$

with

$$
\begin{align*}
C & :=H R H+H^{\prime} E H^{\prime} \tag{14}\\
H^{\prime} & :=\operatorname{diag}\left(\eta_{1}^{\prime}, \cdots, \eta_{n}^{\prime}\right) \tag{15}
\end{align*}
$$

Since the spectrum of A is invariant with respect to the addition of one of its (scaled) rows to any other, and likewise for columns, Gaussian elimination gives us

$$
\begin{gather*}
\left(\begin{array}{cc}
R & R H \\
H R & C
\end{array}\right) \succeq 0 \tag{16}\\
\left(\begin{array}{cc}
R & R H \\
0 & C-H R H
\end{array}\right) \succeq 0 \tag{17}\\
\left(\begin{array}{cc}
R & 0 \\
0 & C-H R H
\end{array}\right) \succeq 0 . \tag{18}
\end{gather*}
$$

Since $R \succeq 0$, equation (18) holds if $C-H R H \succeq 0$. This, however, follows trivially since

$$
\begin{align*}
C-H R H & =H R H+H^{\prime} E H^{\prime}-H R H \tag{19}\\
& =H^{\prime} E H^{\prime} \succeq 0 . \tag{20}
\end{align*}
$$

4 Summary

We showed how, given a correlation structure R for n standard normal variates x_{1}, \cdots, x_{n}, and given the correlations $\left\langle x_{i} y_{i}\right\rangle=\eta_{i}$ to a second set of standard normal variates y_{1}, \cdots, y_{n}, one can constructively arrive at

$$
\begin{align*}
b_{i j} & =\left\langle x_{i} y_{j}\right\rangle=r_{i j} \eta_{i} \tag{21}\\
c_{i j} & =\left\langle y_{i} y_{j}\right\rangle=\eta_{i} r_{i j} \eta_{j}+\eta_{i}^{\prime} e_{i j} \eta_{j}^{\prime} \tag{22}
\end{align*}
$$

for an arbitrary correlation matrix $E \in \mathbb{R}^{n \times n}, E \succeq$ 0 , as a possible choice for the completed correlation matrix $A=\left(\begin{array}{cc}R & B \\ B^{\top} & C\end{array}\right)$. We also proved

$$
\left(\begin{array}{cc}
R & R H \tag{23}\\
H R & H R H+H^{\prime} E H^{\prime}
\end{array}\right) \succeq 0
$$

by the aid of straightforward Gaussian elimination of rows and columns.

It remains to be said that in practice one may wish to use the homogenous parametric form

$$
\begin{equation*}
e_{i j}=\beta+(1-\beta) \delta_{i j} \tag{24}
\end{equation*}
$$

for E, with $\beta \in\left[-\frac{1}{n-1}, 1\right]$ and $\delta_{(. .)}$being the Kronecker symbol, for the sake of simplicity.

References

[Kah07] C. Kahl. Modeling and simulation of stochastic volatility in finance. PhD thesis, Bergische Universität Wuppertal and ABN AMRO, 2007. Published by www.dissertation.com, www.amazon.com/ Modelling-Simulation-Stochastic-Volatility-Finance/ dp/1581123833/, ISBN-10: 1581123833.
[KG06] C. Kahl and M. Günther. Complete the Correlation Matrix. Working paper, Bergische Universität Wuppertal, 2006. www.math.uni-wuppertal.de/~kahl/publications/ CompleteTheCorrelationMatrix.pdf.

[^0]: *OTC Analytics
 ${ }^{\dagger}$ ABN AMRO

