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Abstract

The value of an option on a credit default index swap consists of two parts. The first one is
the protection value due to potential default of the reference names before option expiry date.
The second one depends on the value of the underlying credit default index swap with the index
consists of the remaining survived names at the option expiry date. This article presents a one
period tree-like valuation framework. As an example, the one-factor Gaussian Copula is used
to model the state of the reference pool of the index at the option expiry date. Conditional on
the state of the reference pool at the expiry date, the option is valued under the assumption
that the conditional forward credit default index swap rate follows a displaced diffusion (shifted
lognormal) process.

1 Introduction

A credit default swap on an index (CD index swap) is to some extent similar to a single name credit
default swap (CDS). The index is a portfolio of defaultable reference names with equal weights. Like
a single name CDS, a CD index swap consists of a protection leg and a premium leg. The cash flows
on the protection leg are contingent on losses incurred from credit events of the reference names.
The premium leg consists of scheduled coupon payments with a fixed coupon rate. The sizes of these
cash flows depend on the recovery rate and the notional amount outstanding. For example, consider
an index of 100 reference names with a total notional of 100 millions, if one name defaults then the
notional amount for premium calculation will be reduced by one million, the protection buyer will
deliver one million principal amount of the bonds of the reference name suffering the credit event to
the protection seller in return for one millon in cash. A CD index swap usually carries a fixed coupon
rate. When it is traded on the market at a different level, there is a requirement to pay or receive
an up-front amount to enter a contract. For example, if an index has a fixed coupon of 100 basis
points (bps) and it is traded at 110bps then the protection seller will receive an up-front payment
equivalent to 10bps for the duration of the contract. This up-front payment is usually calculated
using Bloomberg’s CDS pricer.

Options on CD index swaps give investors the right to buy or sell risks at the strike spread. A
payer swaption is an option that gives the holder the right to be the premium payer (protection
buyer), while a receiver swaption holder has the right to be the premium receiver (protection seller).
A payer swaption is often referred to as a put (right to sell risk), a receiver swaption as a call (right
to buy risk). Also traded on the market is a straddle which entitles the holder to choose whether to
buy or to sell risk at a specified strike spread. Options on CD index swaps are traded as knock-in. In
the case of a payer swaption, should the option holder exercise it at the expiry date the holder will
be compensated for losses incurred from any default of the reference names between the trade date
and the expiry date. In the case of a receiver swaption, the option holder will have to pay for the
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losses should he exercise the option. By contrast, a swaption on a single name CDS is usually traded
as knock-out, i.e. if the reference name defaults before the option expiry date the trade is terminated
and there is no exchange of cash flows. A knock-in payer swaption is always more valuable than
its knock-out version. For CD index swap, a knock-in receiver swaption is less valuable than its
knock-out version.

This paper deals with the pricing of options on CD index swaps. Section 2 presents a one-
period tree like approach, each tree node represent a state of the reference pool at the option expiry.
By conditioning the option price on the state of the reference pool we have effectively followed the
survival measure approach used by Schönbucher[Sch03] for pricing options on single name CD swaps.
Section 3 presents an alternative pricing model that is currently used by some market practitioners.

2 A survival measure based option pricing model

Consider a forward-start CD index swap with a forward start date t0, coupon payment dates t1, . . . , tn,
and a coupon rate of K. Without looking at details of all the reference names, we assume the
reference pool is homogeneous. Therefore, we treat the index as if it were a single name for the
purpose of making assumptions on the recovery rate and for bootstrapping the default probability
from the market prices of traded index swaps. Furthermore, the interest rate and default intensity
are assumed to be independent.

Denote

δi the year fraction between ti−1 and ti,

D(t, u) the risk free discount factor, i.e., the price at t of a zero bond that pays 1 at u,

R the recovery rate of a reference name,

p(t, u) the default probability at time u ≥ t of a reference name conditional on survival at t

and for t ≤ t0 let

Ā(t) =
n∑
i=1

δi

[
D(t, ti)(1− p(t, ti)) +

1

ti − ti−1

∫ ti

ti−1

(u− ti−1)D(t, u) dp(t, u)

]
, (1)

be the risky annuity1, and

B̄(t) = (1−R)

∫ tn

t0

D(t, u) dp(t, u), (2)

the expected value of the protection per unit notional.

Let us consider an option to enter the aforementioned CD index swap at the expiry date T = t0.
If there are defaults amongst the reference names before the option expiry date, the reference pool
contains less reference names at the option expiry date T than at the valuation date. For this reason,
the valuation of the option should be conditional on the state of the reference pool at the expiry
date. Let N be the notional amount of each name, M the number of reference names remaining at
the valuation date t = 0, and L̄ the accumulated loss due to default between the trade date and the
valuation date. Denote by Ωm the set of exact m defaults in the reference pool between the valuation
date and the option expiry date T . Conditional on Ωm being realised at the expiry date T , the value
at time t ≤ T of the aggregated loss due to default can be written as

Lm(t) = (L̄+ (1−R)mN)D(t, T ), (3)

1If the coupon is paid on the notional remaining at the coupon date, i.e., contingent accrued coupon is not paid,
then the annuity should be Ā(t) =

∑n
i=1 δiD(t, ti)(1− p(t, ti)).
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and the value of the underlying index swap to the protection buyer is

Bm(t)−KAm(t), (4)

where
Am(t) = (M −m)NÃ(t), Bm(t) = (M −m)NB̃(t), (5)

with

Ã(t) =
1

1− p(t, T )
Ā(t), B̃(t) =

1

1− p(t, T )
B̄(t) (6)

being the annuity and protection value per unit notional conditional on the survival of the rest of
the reference names at the expiry date T .

Let us consider the valuation of payer swaptions first. Conditional on the state of the reference
pool being Ωm at the expiry date T , the pay-off at T is

max(Lm(T ) +Bm(t)−KAm(T ), 0) = Am(T ) max(Sm(T )−K, 0), (7)

where

Sm(t) =
Lm(t) +Bm(t)

Am(t)
(8)

is the conditional default-adjusted forward CD index swap rate. For 0 ≤ m < M , by using Am(t) as
the numéraire, we see that the conditional present value of the pay-off is

V payer
m = Am(0)EQ[max(Sm(T )−K, 0)], (9)

where Q is the survival measure generated by the survival annuity Ã(t). Trivially, we have

V payer
M = LM(0). (10)

Therefore, the present value of the payer swaption is

V payer =
M−1∑
m=0

PmAm(0)EQ[max(Sm(T )−K, 0)] + PMLM(0), (11)

where Pm denotes the probability of Ωm. Similarly, we find the value of a receiver swaption as

V receiver =
M−1∑
m=0

PmAm(0)EQ[max(K − Sm(T ), 0)]. (12)

It can be seen from

M∑
m=0

Pm = 1,
M∑
m=0

mPm = Mp(t, T ), EQ[Sm(T )] = Sm(0) (13)

that the values of payer and receiver swaptions obey the so-called “call-put” parity

V payer − V receiver = MNĀ(0)(S̄(0)−K), (14)

where

S̄(t) =
(L̄+ (1−R)MNp(t, T ))D(t, T )

MNĀ(t)
+ S(t) (15)

is defined as the default-adjusted forward CD index swap rate with S(t) = B̄(t)/Ā(t) being the
(unadjusted) forward CD index swap rate. Because of this ”call-put” parity we need only consider
payer swaptions in the rest of this paper.
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Empirical research such as [MW03] suggests that the dynamical behaviour of credit defaults
swap rates tend to be complex and neither completely lognormal nor normal. In general it is close to
normal distribution for high credit quality reference names and lognormal distribution for low quality
reference names. Therefore, a reasonable assumption would be that the conditional default-adjusted
forward CD index swap rate Sm(t) follows the displaced diffusion process

dS(t) = σ[βS(t) + (1− β)S(0)] dWt, t > 0 (16)

where β ≥ 0 is a displacement parameter and σ is a volatility parameter. Noting that there is no
drift term in (16) because the swap rate we are concerned with is a martingale with respect to the
probability measure Q. When β = 1, (16) is lognormal. When β = 0, it becomes a normal process. A
brief discussion of the displaced diffusion process and its connection with CEV process in the context
of implied volatility skew can be found in [Jäc02]. However, one needs to take extra care in the case
of β < 1, since the swap rate can be negative with a small but positive probability. The beauty of
using the displaced diffusion process is that it is no harder to get analytic option price formulae than
it is in the case of lognormal process.

For simplicity, we assume β and σ are independent of Ωm. Knowing that βS(t) + (1− β)S(0) is
lognormal when β > 0 and that S(t) is normal when β = 0, we have

EQ[max(Sm(T )−K, 0)] = Call(Sm(0), K, T, σ, β), (17)

where

Call(S,K, T, σ, β) =


[
σ
√
TS√
2π

e−
1
2
d23 − (K − S)Φ(d3)

]
, β = 0,

1
β

[SΦ(d1)−KβΦ(d2)] , β > 0,
(18)

with Kβ = βK + (1− β)S being the adjusted strike, and

d1 =
log(S/Kβ)

βσ
√
T

+
1

2
βσ
√
T , d2 = d1 − βσ

√
T , d3 =

S −K
σ
√
TS

. (19)

In order to calculate the distribution of the number of defaults at the expiry T in a way that
is consistent with the market practice for CDO tranche pricing, we choose the one-factor Gaussian
Copula model (also known as the large pool approximation when the reference pool is homogeneous)
to obtain

Pm =

∫ ∞
−∞

(
M
m

)
q(x)m(1− q(x))M−mφ(x) dx, m = 0, 1, · · · ,M, (20)

where ρ ≥ 0 is a correlation parameter2, φ is the density function of the standard normal distribution,
and

q(x) = Φ

(
Φ−1(p(0, T ))−√ρx

√
1− ρ

)
, (21)

is the default probability at time T conditional on a given sample x of the standard normal distri-
bution with Φ being its cumulative density function.

By combining formulae (11), (17) and (20) we are able to price payer swaptions on credit default
indices. The resulting formula resembles the equity call option formula (see, e.g., [Jos03]) when the
underlying process is assumed to be a jump diffusion of the form

dSt
St

= µ dt+ σ dWt + (J − 1) dN(t) (22)

2For short-dated options, it is reasonable to assume that Pm is very small for large m. Hence, one may choose ρ to
be the implied correlation of the traded equity tranches of the corresponding indices.
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where J is the jump size, N(t) is a Poisson process. Of course, in our case there are only a finite
number of jumps with each jump corresponds to the default of a reference name, the sizes of these
jumps are not identical, and the arrival of the jumps are not Poisson. It is worth noting that (11) is a
generic pricing formula and one can choose different models for calculating Pm and EQ[max(Sm(T )−
K, 0)].

Example 1. To illustrate the impact of the correlation parameter ρ on the option price, we
consider payer swaptions that give the option holders the right to buy protection in three months
time on a 4Year9Month index CD swap. Suppose the index consists of 30 reference names with a
total notional of 30 million. It is traded at 100bps flat and is assumed to have 40% recovery rate.
The interest swap rate is 4%. The model parameters are σ = 50% and β = 1. Figure 1 shows that
correlation has little effect on the option value when it is not deeply out-of-money, i.e., when the strike
K is not far greater than the default-adjusted forward CD index swap rate, which is S̄(0) = 106bps
in this case.
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Figure 1: Sensitivity To Correlation

Example 2. When β 6= 1, the option pricing model present here can generate volatility skews,
i.e., the implied Black volatility (the equivalent volatility for β = 1) can display certain levels of
skewness. Consider the same put option as in Example 1 but priced with different values of β.
Figure 1 shows that the two different shapes of skewness, one for β < 1 and the other for β > 1.

To model volatility smile, one may choose to replace the displaced diffusion process (16) with
stochastic volatiltity models such Heston or SABR.

The ideas present in this section can be extended to cover the case of inhomogeneous reference
pool3. However, we may have to make adjustment to the CDS curves of the underlying reference
names. This is because, while we can infer the fair credit default swap rate (the intrinsic value) of

3The number of possible states of the reference pool is 2M , which can be very large even for a relatively small M
such as 30 (the number of names for the DJ iTraxx Europe HiVol and the Crossover indices). To be computationally
practical, one may have to approximate the original reference pool by a homogeneous pool for cases where there are
more than a couple of defaults.
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Figure 2: Volatility Skew

an index CD swap directly from the CDS curves of the underlying reference names, the market may
trade the index swap at a different level due to issues such as liquidity and different definitions of
credit event for indices and for single names.

3 An alternative approach

The expected pay off of a payer CD swaption at the expiry date T can be written as

MN max(B̄(T )−KĀ(T ), 0)) = MNĀ(T ) max(S̄(T )−K, 0)). (23)

Assuming the default-adjusted forward rate S̄(t) follows the displaced diffusion process (16), by using
Ā(t) as a ”numéraire” we find that

V payer = MNĀ(0)Call(S̄(0), K, T, σ, β), (24)

The lognormal case, i.e., β = 1, seems to be quite popular with some market practioners. Because of
its simplicity, (24) is a suitable candidate for quoting purpose. However it does have problems when
used for option valuation.

First of all, there is a technical flaw in the derivation of (24) in that the risky annuity Ā(t) is
not a valid numéraire since it contains the values of defaultable assets and it can become zero upon
the default of all underlying assets. In the special case of an index with a single reference name
(M = 1)the pricing formula (24) is inconsistent with the obvious choice

V payer = NĀ(0)Call(S(0), K, T, σ, β) + (1−R)Np(0, T )D(0, T ), (25)

which is simply the option value in the knock-out case4 plus the present value of the expected

4See, e.g., [HW02] and [Sch03], where Schöbucher’s paper contains an excellent discussion on the survival measue
approach for pricing single name CD swaption.
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aggregated loss at the option expiry date. Even though the model parameters σ and β in (24) have
slightly different meanings from those in (25), it does show that (24) is less than ideal.

Secondly, (24) may not be adequate in capturing the distributional nature of the number of
default at the option expiry, especially when the opton is deeply out-of-money5. To be more precise,
(24) may underestimates the values of out-of-money options as is shown by the following example.

Example 3. Consider a payer swaption that gives the option holder the right to buy protection
at 200bps in three months time on a 4Year9Month CD index swap of two reference names with a
notional of five million each. Assume that the interest rate is 4%, both reference names’ CDS curves
traded at 100bps flat and are assumed to have 40% recovery rate. This means that the probability
of a single name default within 3 months is approximately 1− exp(−0.01/(1− 0.4) ∗ 0.25) ≈ 0.42%,
the forward CDS rate for the index is 100bps, the default-adjusted forward CDS rate is S̄(0) =
106bps, the annuity is 4.15. Let us estimate the option value from first principles. If there is one
default before the option expiry, the option holder would exercises the option to receives a protection
payment of (1 − 0.4) ∗ 5, 000, 000 = 3, 000, 000, at the same time makes a mark-to-market loss of
(200 − 100)/10000 ∗ 4.15 ∗ 5, 000, 000 = 207, 500 on the remaining CD index swap, assuming the
CDS spread on the remaining survived name has not changed. The total value to the option holder
would be 2, 792, 500 in this case. If both names default then the value to the option holder would be
even greater. Suppose defaults between the two reference names are independent. The probability of
having at least one default is 1− (1−0.42%)2 ≈ 0.838%. Therefore, the expected value to the option
holder would be greater than 2, 792, 500 ∗ 0.838% ≈ 23, 400. However, the swaption price given by
(24) is approximately 260 if the lognormal volatility of the default-adjusted forward CD index swap
rate is assumed to be σ = 50%. To have the option price given by (24) exceed 23, 400, a lognormal
volatility well above 100% is needed.
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