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Abstract

The likelihood ratio method [BG96] provides a tool for the calculation of hedge ratios and
risk parameters with Monte Carlo calculations. In this article, we present the extension of existing
likelihood ratio methods to multiple underlyings and to higher order sensitivities such as the cross-
derivatives on the underlyings, and how the method can be used in a displaced diffusion [Rub83]
framework. Next, an alternative likelihood ratio formula that can be used to compute sensitivities
with respect to market adjustments of forward contracts is given. We also derive the respective first
and second order hedge quantities with respect to the underlyings’ hazard rates for the correlated-
time-of-default model [Li00], as well as the corresponding correlation coefficient risk. In addition,
we show how the sensitivities with respect to model parameters can be converted into quantities
that are more meaningful to traders: exposures with respect to implied volatilities, or with respect
to credit spreads. In a nutshell: this is a collection of likelihood ratio formulæ.

1 Introduction

The holy grail of numerical derivatives pricing is to find a fully generic method for the computation
of the risk-neutral value of fully generic derivatives structures with little effort,and to obtain all the
possibly relevant hedge ratio figures along with the price. Whilst the need for hedge ratios is given
in all business areas for the purpose of dynamic replication and risk management, derivatives traders
in certain asset classes such as FX options go one step further: for many exotic structures, in fact for
most commoditised types of contracts, both parties of a deal not only agree on the price but also on the
delta hedge that would neutralise the position with respect to movements in the underlying FX rate (to
first order). This is done despite the fact that, strictly speaking, the used hedge ratios are effectively
the main strategic decisions made by the exotic derivative trader, with or without the support of exotic
pricing models. Naturally, the ability of a derivatives pricing utility to compute hedge ratios as well as
prices is also desirable where the spot sensitivity hedge is not explicitly part of the actual deal done.
There are several methods to compute the Greeks with Monte Carlo: brute-force finite differencing
by means of revaluation with changed parameters, pathwise differentiation [Cur98, Jäc02], equivalent
entropy projection methods [Ave98, AG02], fully fledged Malliavin calculus [FLL+99] and of course
the leaner cousin of Malliavin calculus: the likelihood ratio method [BG96].

1.1 A brief review of the likelihood ratio method

Option pricing by Monte Carlo simulation amounts to a numerical approximation to an integral

v =

∫
π(S) ψ(S) dS (1)
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whereπ(S) is the (nuḿeraire-denominated, e.g. discounted) payoff as a function of a future realisation
of a given set of underlying indices or assets denoted byS. Numerically, we construct evolutions of
the underlying assets represented byS given a risk-neutral distribution densityψ(S). We hereby
typically construct the paths by the aid of a set of standard normal variates which corresponds to

v =

∫
π(S(z;α)) ϕ(z) dz , (2)

with ϕ(z) = 1√
2π

e−
1
2
z2, and all dependencies on further pricing parameters (herein represented by

α) such as the spot level at inception, volatility, time to maturity, etc., are absorbed into the path
constructionS(z;α). Any derivative with respect to any of the parameters will thus suffer from
discontinuities ofπ in S (or discontinuities of derivatives ofπ with respect toS) since

∂v

∂α
=

∫
∂

∂α
π(S(z;α)) ϕ(z) dz . (3)

Clearly, discontinuities ofπ (or its derivatives with respect toS or any of the pricing or model param-
eters in the vectorα) are commonplace in financial derivatives.

An intuitive way to understand thelikelihood ratio method [BG96] is to change our view that the
numéraire-denominated payoffπ depends onS which in turn depends on the integration variablez,
and instead to go back to the original equation (1) wherein notS but ψ = ψ(S;α) is effectively a
function of the parametersα, albeit that the functional dependence may be somewhat more compli-
cated. In other words, a transformation of the density is required to look at the pricing problem in the
form

∂v

∂α
=

∫
π(S)

∂

∂α
ψ(S;α) dS =

∫
π(S)

∂ψ(S;α)
∂α

ψ(S;α)
ψ(S;α) dS . (4)

The calculation of the desired Greek now looks exactly like the original pricing problem, only with a
new payoff function

χ(S;α) := π(S) · ω(S;α) (5)

with

ω(S;α) :=
∂ψ(S;α)
∂α

ψ(S;α)
. (6)

The termω(S;α) is often referred to as alikelihood ratio, whence the name of the method. Using
this definition, the Greek calculation becomes

∂v

∂α
=

∫
χ(S;α)ψ(S;α) dS (7)

with χ(S;α) defined as in equation (5), i.e. each realised payoff in the simulation is simply weighted
with the likelihood ratioω(S;α) in order to compute the desired Greek.

The beauty of this idea is that for the probability density functions that we typically use such as the one
corresponding to (geometric) Brownian motion, the functionχ(S;α) is∈ C∞ in the parameterα and
thus doesn’t cause the trouble that we have when we approach the Greek calculation problem in the
form of equation (2) by, say, finite differencing. The application is now straightforward. Alongside the
calculation of the option price, for each constructed path (in whatever representation) inS, apart from
computing the payoff, also calculate the likelihood ratioω(S;α), and multiply it with the payoffπ(S).
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2 Transforming the joint density

DefineX as a vector representing the evolution of thed state variables over all of a given set ofm
time stepst ∈ {t1, ..., tm}. A d-dimensional process for the state variables thus means thatX ∈ Rn

with n = d ·m. Equally, definez ∈ Rn as a vector ofuncorrelatedstandard normal variates. In the
following, we assume that the discretisation of the specific stochastic process at hand will be sampled,
ultimately, by drawing standard normal variates and thus we base all decompositions on a vector of
uncorrelated standard normal variates because ultimately all number generation (pseudo-random or
low-discrepancy) starts off with vectors of normal variates that are uncorrelated in the limit of many
draws. Of particular importance for all subsequent likelihood ratio method calculations is the global
covariance matrixC of the realisation of all state variables at all future time horizons, i.e.

C =
〈
X ·X>〉− 〈X 〉 ·

〈
X>〉 , (8)

where angle brackets denote expectation in the chosen risk-neutral measure. Also, we need to define
a pseudo-square rootA of C such that1

C = A · A> . (9)

Note thatA can be computed by the aid of a spectral split, a Brownian bridge decomposition, or by
Cholesky decomposition (which corresponds to incremental path construction) [RJ00, Jäc02]. Since
each drawX (representing a full evolution of all state variables over all future time horizons of
interest) is fully determined by an underlying vector drawz of standard normal variates, we can view
this as a transformation:

z → X = X(z) . (10)

Clearly, the functionX = X(z) depends on further parameters given by any one specific pricing
problem at hand. In fact, the Greeks that we wish to calculate alongside our Monte Carlo simulation
to determine the risk-neutral value of a deal are the partial derivatives of the contract with respect
to these additional parameters that enter the transformation (10). The joint multivariate probability
density describing the statistics of all of the elements of the vectorz is given by

φ(z) :=
n∏
i=1

ϕ(zi) (11)

with

ϕ(z) =
1√
2π

e−
1
2
z2 (12)

as before. By virtue of the transformation (10), this can be translated into a joint density function
for X

ψ(X) = φ(z)

∣∣∣∣∂(X)

∂(z)

∣∣∣∣−1

, (13)

provided that the Jacobian

J =

(
∂(X)

∂(z)

)
(14)

is regular.

1Karatzas and Shreve call this matrixA thedispersion matrix[KS91] (page 284).
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3 Multivariate geometric Brownian motion

For many derivatives that depend on a multitude of underlying assets, multi-factor geometric Brown-
ian motion models are still an acceptable approach, especially when very little information on market
implied skews and smiles of the individual underlyings is available. In this context, we define

xji := lnSji = lnSi(tj) (15)

to represent the realisation of thei-th state variable at timetj. Now, let us imagine that all Monte
Carlo paths are created in an incremental fashion2, i.e.

xji = x(j−1) i + µji∆tj −
1

2
cjii +

d∑
k=1

ajikzjk (16)

= x0i +

j∑
l=1

(
µli∆tl −

1

2
clii +

d∑
k=1

alikzlk

)
. (17)

Hereby, all of thezjk for j = 1..m, k = 1..d, are independent standard normal variates, and the
ajik comprise the elements of the pseudo-square root of the covariance matrixCj for the time step
∆tj = tj − tj−1, as defined in equation (9). Equation (17) enables us to compute the elements of the
Jacobian matrix J as defined in equation (14):

∂xji
∂zlk

= alik1{l≤j} (18)

Note that this means that all of the elements of the Jacobian matrix are constants, and therefore any
derivative of the Jacobian determinant with respect to either coordinate system (x orz) vanish. What’s
more, equation (18) clearly states that the Jacobian matrix is a function of the covariance matrix for
the time step, andnot a function of the initial values of the state variables.

3.1 Sensitivities with respect to underlying assets

In order to compute the Greeks with respect to the initial values of the underlying assets, let us first
recall that, using the definition in equation (15),

∂

∂S0i

=
1

S0i

∂

∂x0i

(19)

and that
∂

∂x0i

ψ(x) = |J |−1 · ∂

∂x0i

φ(z) − φ(z) · |J |−2 · ∂

∂x0i

|J | . (20)

Fortunately, the second term on the right hand side is identically zero by virtue of equation (18), and
we can concentrate on the term∂

∂x0i
φ(Z). From the definitions (11) and (12), we can readily see

∂

∂x0i

φ(z) = −φ(z) ·
j=m,k=d∑
j=1,k=1

zjk
∂zjk
∂x0i

(21)

2In section3.5, we will generalise to arbitrary path decomposition.
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whence
∂

∂x0l

ψ(x) = −ψ(x) ·
j=m,k=d∑
j=1,k=1

zjk
∂zjk
∂x0l

. (22)

In order to calculate the terms∂zjk/∂x0l, we take the partial differential of equation (16) with respect
to x0l, bearing in mind that the indexj in that equation is an integer in the range[1,m]. This gives

0 = δj1δil +
d∑

k=1

ajik
∂zjk
∂x0l

(23)

whereδ represents the Kronecker symbol. Let us now define the inverse of the dispersion matrixAj
for time steptj−1 → tj as

Bj := A−1
j . (24)

This enables us to write
∂zjk
∂x0l

= −
d∑
i=1

bjkiδj1δil = −bjklδj1 , (25)

and
∂

∂x0l

ψ(x) = −ψ(x) ·
d∑

k=1

z1kb1kl . (26)

Combining this with equations (6) and (19), we finally obtain the likelihood ratio for the computation
of the sensitivity with respect to the initial value of asset #i:

ω∆i
=

d∑
k=1

z1kb1ki
S0i

(27)

Note that the only non-constant elements on the right hand side are the normal variates that are used
for the first step in the incremental path construction, despite the fact that the derivative contract
may contain an arbitrary payoff schedule along the path. This is a consequence of the telescopic (i.e.
additive) nature of equation (17): any change of any underlying along the path could have been caused
by movements in the first step.

As for the second derivatives with respect to the initial values of the underlying assets, we proceed as
follows:

ωΓij
=

1

ψ
∂S0j

(ψ · ω∆i
) = ω∆i

ω∆j
+ ∂S0j

(ω∆i
) (28)

which leads to

ωΓij
= ω∆i

ω∆j
− δij

ω∆i

S0j

−
d∑

k=1

b1kib1kj
S0iS0j

. (29)

Note that the last term is constant and can be pre-calculated. What’s more, the expression∑d
k=1 b1kib1kj is equal to the entry in thei-th row andj-th column of the inverse of the covariance

matrix over the first time step. This can be seen as follows:

d∑
k=1

b1kib1kj =
d∑

k=1
(B1)ki(B1)kj =

d∑
k=1

(
A−1

1

>)
ik
(A−1

1 )
kj

=
(
(A>1 )

−1
·A−1

)
ij

=
(
(A·A>)

−1
)

ij
= (C−1

1 )
ij
. (30)
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A major caveat with respect to the application of the likelihood ratio method is the requirement of
non-singular covariance matrices. This, however, is perfectly consistent with the overall model de-
scription of correlated Brownian motion. Let us recall that the hedge ratios Delta and Gamma are
sensitivities with respect to the changes of the values of underlying assetsas they can occur dynam-
ically over the course of small time steps dt within the model framework. For instance, the hedge
ratio Delta is computed as the number of underlying shares that have to be held against a short posi-
tion in a derivative contract in order to protect against losses in the hedged portfolio due to dynamic
movements of the underlying asset values, in the specified model framework. Any individual Delta
figure represents the number of shares that have to be held in order to protect against movements of
the associated asset alone,ceteris paribus, i.e. whilst all other market parameters and asset values
remain unchanged. This is naturally impossible if we assume a singular correlation matrix to start
with. As an example, think of two assets with perfect correlation. It isby definition of perfect corre-
lation impossible for one of the assets to move alone whilst the other remains unchanged. Therefore,
we cannot expect the likelihood ratio method to return sensible Delta and Gamma figures when the
provided correlation matrices are singular.The likelihood ratio method provides Delta and Gamma
sensitivity numbers with respect to dynamicchanges of the underlying securities.

3.2 Forward vega

In order to compute a measure for the sensitivity of an exotic option price with respect to the individual
coefficients representingvolatility, let us first assume that any payoff function is a function of a vector
x of transformed state variables, andnot a function of the volatility coefficients, neither directly,
nor indirectly. In a Gaussian Hull-White or extended Vasicek model, this precludes the possibility
of the payoff function requiring additional transformations fromx to a set of discount bond values
invoking functionals of the short rate volatility function(s). However, for interest rate models that are
based on the dynamics of market observables such as the BGM/J [BGM97, Jam97] and other market
models [MSS97], or in the case of correlated geometric Brownian motion or displaced (geometric)
diffusion [Rub83], this restriction poses no difficulty [GZ99].

As a second assumption, let us take it as given that all volatilities are considered to be constant over
the time steptj−1 → tj. This can be interpreted as either the assumption of piecewise constant
instantaneous volatility, or as the computed exposure to be the sensitivity with respect to the root-
mean-square volatility over the time step. Letσji denote the volatility coefficient of the underlying
financial variable #i over time steptj−1 → tj. For the purpose of Vega calculations, we thus need to
establish the volatility likelihood ratio

ωσji
:=

∂ψ(x)
∂σji

ψ(x)
. (31)

Now let us recall that we express the densityψ(x) explicitly as a product of the joint density of inde-
pendent normal variates which are given by the inverse transformationz = z(x; σ), and a Jacobian
determinant, i.e.

ψ(x) = |J |−1 · φ
(
z (x; σ)

)
. (32)

For the calculation of Delta and Gamma, there was no need to compute derivatives of the Jacobian
determinant with respect to the spot value of the underlying financial variable because the Jacobian
determinant does not depend on it. For Vega, however, the situation is different. The densityψ(x)
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depends on the volatility coefficients both directly in the Jacobian determinantand indirectly due to
the inverse transformationx → z = z(x; σ). This means,

∂

∂σji
ψ(x) = φ

(
z (x; σ)

)
· ∂

∂σji
|J |−1 + |J |−1 · ∂

∂σji
φ
(
z (x; σ)

)
. (33)

In equation (18), we obtained the result that the Jacobian matrixJ as defined in equation (14) is
of block-triangular form. Therefore, the Jacobian determinant|J | is given by the product of the
Jacobian determinants of the block matrices that form the diagonal part ofJ , namely by the product
of the determinants of the stepwise dispersion matrices, that is

|J | =
m∏
j=1

|Aj| . (34)

At this point, it is conducive to make a specific choice as to how the covariance matrixCj for time
steptj−1 → tj is split into the pseudo-square rootAj. For this purpose, defineΘj as the diagonal
matrix whose diagonal entries are given by the volatility coefficients, i.e.

θjik := σjiδik . (35)

Also, letRj be the correlation matrix for the time steptj−1 → tj. The covariance matrix can thus be
written as

Cj = Θj ·Rj · Θj · ∆tj . (36)

In order to obtain a pseudo-square rootAj of Cj, let us further define the matrixQj given by the
product of the spectral pseudo-square root of the correlation matrix, and the square root of the time
step∆tj, i.e.

Qj :=
√
Rj ·

√
∆tj (37)

and define
Aj := Θj ·Qj . (38)

Given this formulation of the dispersion matrixAj, it is clear that we have

|Aj| = |Qj| ·
d∏
i=1

σji (39)

and
∂

∂σkl
|Aj|−1 = −δjk

σjl
· |Aj|−1 . (40)

This enables us to express the first term on the right hand side of equation (33) in the following simple
and convenient way:

φ
(
z (x; σ)

)
· ∂

∂σji
|J |−1 = − 1

σji
φ
(
z (x; σ)

)
· |J |−1 = − 1

σji
ψ(x) (41)

The second term of equation (33) can be expanded in analogy to equation (21), and thus we have

∂

∂σji
ψ(x) = Ψ(x) ·

[
− 1

σji
−
k=m,l=d∑
k=1,l=1

zkl
∂zkl
∂σji

]
. (42)
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In order to compute the term∂zkl

∂σji
, it is best to rewrite equation (16) as

xkn = x(k−1)n + µkn∆tk −
1

2
σ2
kn∆tk +

d∑
l=1

aknlzkl . (43)

Differentiating equation (43) with respect toσji yields

0 = −σji∆tj δjkδin +
d∑
l=1

zkl
∂aknl
∂σji

+
d∑
l=1

aknl
∂zkl
∂σji

. (44)

By virtue of equation (38), we have

∂aknl
∂σji

=
1

σji
ajilδjkδin (45)

whence equation (44) becomes

d∑
l=1

aknl
∂zkl
∂σji

=

(
σji∆tj −

d∑
g=1

1

σji
ajigzjg

)
δjkδin . (46)

Using the inverseBk = A−1
k , this equation can be solved:

∂zkl
∂σji

=
d∑

n=1

bkln

(
σji∆tj −

d∑
g=1

1

σji
ajigzjg

)
δjkδin

= bjli

(
σji∆tj −

d∑
g=1

1

σji
ajigzjg

)
δjk . (47)

Substituting this into equation (42) gives us

∂

∂σji
ψ(x) = Ψ(x) ·

[
d∑
l=1

zjlbjli

(
d∑

k=1

1

σji
ajikzjk − σji∆tj

)
− 1

σji

]
. (48)

Eventually, we obtain the following expression for the likelihood ratio for Vega:

ωσji
=

1

σji

(
d∑

k=1

zjkbjki

)(
d∑
l=1

ajilzjl

)
− σji∆tj

(
d∑

k=1

zjkbjki

)
− 1

σji
(49)

3.3 Projection onto vega with respect to implied volatilities

The likelihood ration given by equation (49) enables us to compute the sensitivity of an exotic deriva-
tive contract with respect to forward volatility coefficients. For hedging purposes, however, we are
usually more interested in sensitivities with respect to the implied volatilities of plain vanilla options
available in the market. This requires a transformation fromωσji

to ωσ̂ji
where the hat on the volatil-

ity coefficient is to indicate that it is an implied volatility of plain vanilla options on the underlying
financial asset #i with maturitytj. The details for this transformation can be found in [Jäc02] (section
11.9.1), and the resulting relationship is

ωσ̂ji
=

(
σ̂jitj
σj∆tj

)
ωσji

− 1{j<m}

(
σ̂jitj

σj+1 i∆tj+1

)
ωσj+1 i

. (50)
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3.4 Displaced diffusion corrections

The likelihood ratio formulæ derived in the previous sections are directly linked to the model assump-
tion of (correlated) geometric Brownian motion. It is possible, however, to adapt these formulæ to
closely related modelling assumptions. One such example is that ofdisplaced diffusion[Rub83]. In
this case, the dynamics of any one individual underlying asset valueS are given by

dY
Y

= µdt+ σDDdW (51)

with
Y (t) := S(t) + A(t) (52)

andA(t) being a time-dependent displacement whose evolution over time is determined by

A(t) = A0e
µt and A0 := −S0 log2Q (53)

for some displacement coefficientQ ∈ (0, 2). Given that the displaced diffusion model can be seen
as that of geometric Brownian motion of an affine transformation of the underlying asset, it is clear
that

ω∆DD
S0

= ω∆DD
Y0
· ∂Y0

∂S0

. (54)

Since, as mentioned at the end of section3.1, likelihood ratio Delta and Gamma sensitivity calcula-
tions are with respect to dynamic changes of the underlying asset, we have to viewY0 as

Y0 = S0 + A0 (55)

with A0 not being directly or indirectly dependent onS0. Therefore, the term∂Y0/∂S0 in equation
(54) is unity and we have

ωDD
∆S0

= ωDD
∆Y0

(56)

and
ωDD

ΓS0
= ωDD

ΓY0
. (57)

As for Vega, the situation is slightly different in the displaced diffusion setting. This is mainly due
to the fact that when we talk about Vega, we really are interested in a sensitivity with respect to the
implied Black volatility of plain vanilla options on the underlying assets since it is those

plain vanilla options that we would use for hedging purposes. Of course, using the volatility coef-
ficient likelihood ratio given in equation (49) and the transformation (50), we can directly compute
the sensitivity∂ψDD/∂σ̂DD with respect to the displaced diffusion coefficientσ̂DD. The sensitivity with
respect to the at-the-forward implied Black volatility is then given by

∂ψDD

∂σ̂Black
=

∂ψDD

∂σ̂DD

· ∂σ̂DD

∂σ̂Black
. (58)

Define a simplified form of the (undiscounted) Black (call) option formula by

B(F,K, ζ) := F · N

(
ln (F/K)

ζ
+

1

2
ζ

)
−K · N

(
ln (F/K)

ζ
− 1

2
ζ

)
(59)
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with F being the par forward price for maturityT , K the strike of the option, andζ = σ̂Black

√
T the

log-standard deviation of the log-normally distributed forward price.

Now, the implied Black volatility that corresponds to the at-the-forward price of a plain vanilla option
valued in the displaced diffusion setting is implicitly determined by

B
(
F + A(T ), F + A(T ), σ̂DD

√
T
)

= B
(
F, F, σ̂Black

√
T
)

(60)

whence we have∂B(f, k, ζ)

∂ζ

∣∣∣∣∣∣∣∣∣f = F + A(T )
k = K + A(T )
ζ = σ̂DD

√
T

 · ∂σ̂DD

∂σ̂Black
=

∂B(f, k, ζ)

∂ζ

∣∣∣∣∣∣∣∣∣f = F
k = K
ζ = σ̂Black

√
T

 (61)

Defining

ϑ :=
F + A(T )

F
(62)

and taking advantage of the specific structure of the Black option formula, we can put all of this
together to obtain

ωDD
σ̂Black = ωDD

σ̂DD ·

∂B(f, k, ζ)

∂ζ

∣∣∣∣∣∣∣∣∣f = 1
k = 1
ζ = σ̂Black

√
T


/∂B(f, k, ζ)

∂ζ

∣∣∣∣∣∣∣∣∣f = ϑ
k = ϑ
ζ = σ̂DD

√
T

 . (63)

3.5 Global covariance path decomposition

In practice, we may prefer to construct paths of correlated geometric Brownian motion with methods
other than the straightforward incremental algorithm assumed in equations (16) and (17). Instead,
we may wish to use a spectral decomposition of the global covariance matrix, or a combination of
the Brownian bridge with spectral decomposition of the correlation between assets. In any case, we
can always assume that we have knowledge of all the entriescij of a global covariance matrixC that
determines the covariance of the realisation of any of thed assets at any of them points in time to any
other of the the assets at any other time. In order to reduce the number of indices, let us define

n := m · d (64)

and use the convention that withi = k · d+ l, the variable

xi = lnSkl (65)

refers to the realisation of asset #l at time steptk. Equally, withj = p ·d+q, let the covariance matrix
entry cij denote the covariance of asset #l at time steptk with asset #q at time steptp. Also, let us
define

ξi = lnFkl −
1

2
cii (66)

whereFkl stands for the par strike of a forward contract on asset #l maturing at timetk. Using this
enumeration scheme, a vector drawz ∈ Rn tranforms into a realisation of the state variable vector

x = ξ + A · z . (67)

10



Hereby,A represents the dispersion matrix, i.e. the pseudo-square root of the covariance matrixC
that corresponds to the chosen path construction method. For incremental generation, the matrixA
is of triangular form; for a Brownian bridge method, it is sparse with some structure; and for the
spectral path construction method, it is a full matrix. The density of the state vectorx, or rather its
mean-corrected equivalent

y := x− ξ , (68)

is given by

ψ(y) =
e−

1
2

y>D y

|A| · (2π)
n/2

(69)

with
D := C−1 . (70)

Following a similar analysis to the previous sections, we can compute the likelihood ratio for the
sensitivity with respect to the forward valueFi (assuming the same enumeration scheme as for thexi
in order to reduce the number of indices) as

ωFi
= ∂Fi

ψ/ψ

= ∂Fi
yi · ∂yi

(
−1

2
y>D y

)
,

i.e.

ωFi
=

1

Fi
·

n∑
j=1

dijyj . (71)

Similarly, the second order sensitivities, orforward cross-Gammas, turn out to be

ωFiFj
= ωFi

ωFj
− δij

ωFi

Fj
− dij
FiFj

. (72)

The reader should note, however, that the above likelihood ratios are with respect to the movement of
asingleforward contract par strike. This means, if we wish to compute the spot delta, we need to use
the conversion

ω∆l
=

m∑
k=1

ωF(k·d+l)

∂F(k·d+l)

∂S0l

. (73)

The conversion formula for spot gamma clearly simply involves a double sum, respectively. The
above decomposition into forward deltas (and gammas) can be useful for two reasons. The first one
is that, in case the time between the valuation date and the first fixing date is short, the variance of
likelihood ratio term for sensitivity with respect to the first forward grows like(∆t1)

−1/2 and can spoil
the whole calculation. A remedy for this can be to approximate the sensitivity with respect to the first
fixing with other means, and then to sum up the terms to obtain a spot delta. The second benefit of
forward delta calculations is that, for instance for equity underlyings, it allows us to correct for the
specific bespoke model for the connection between the spot, the forward, and any expected dividends
between now and the fixing date we wish to employ3. This can be particularly pertinent for some
of the single stock names that, relative to their current share prices, are expected to pay considerable
dividends in the near future, which can give rise to noticeable pricing and hedge ratio differences.

3The most commonly used formula for the forward is to subtract the net present value of dividend forecasts, but other
approaches such as to treat them as a mixture of absolute and proportional components are also in use.
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For the computation of the likelihood ratio associated with the sensitivity with respect to any of the
implied volatilities σ̂i, we use again the fact that the covariance matrix can be represented as the
product

C = Θ ·R · Θ (74)

with the entries of the diagonal matrixΘ given by

θii = σ̂i
√
ti%d (75)

andR being the global correlation matrix. The notationti%d is to indicate that the indexi is actually
given by thei = k · d + l with l being the asset index andk being the time step index, i.e.k = i%d.
This gives us immediately

∂σ̂i
|A|−1 = ∂σ̂i

(√
|C|
)−1

= ∂σ̂i

(√
|R| ·

∏n
i=1 σ̂

2
i ti%d

)−1

= −1 /(σ̂i · |A|) , (76)

∂σ̂i
yj = cii

σ̂i
δij , (77)

∂σ̂i
djk = −djk

σ̂i
(δij + δik) , (78)

and
ωσ̂i

= ∂σ̂i
ψ/ψ = − 1

σ̂i
− 1

2
∂σ̂i

(
y>D y

)
(79)

which eventually leads to

ωσ̂i
=

1

σ̂i

[
(yi − cii)

n∑
j=1

dijyj − 1

]
. (80)

4 Likelihood ratio risk in a correlated-time-of-default model

A popular approach to value credit derivatives such asCollateralised Debt Obligationsis to use a
model whose sole function is to govern the joint distribution of default times of different credit en-
tities. When default times are drawn from the joint distribution by means of first generating code-
pendent uniform variates coupled via a Gaussian copula, and then using the individual marginal
distributions associated with the individual underlyings, the framework is often also referred to as
a correlated-time-of-default model, and sometimes as theLi model [Li00]. This modelling approach
is very convenient due to the comparative ease of implementation and the resulting speed when used
with Monte-Carlo simulations, as well as the availability of analytical solutions when the correlation
structure is restricted to specific forms [HW03].

In a model that is reduced to the distribution of default times of then underlyings that are part of the
credit derivative contract, the value of the deal can be written as

v =

∫
π(τ ) · ψ(τ ) dτn (81)
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whereπ(τ ) is the discounted payoff as a function of a future realisation of then default timesτi for
i = 1..n, andψ(τ ) denotes the joint probability density of the default times. The joint distribution of
the default times is in turn given as

Ψ(τ ) = C(u) (82)

whereC(u) is a copula as a function of the default quantilesu, and the marginal distributions of
the default times are given byΨi(τi) for i = 1..n. The connection between the default quantiles,
or alternatively the survival probabilitiesQi := 1 − ui, and the associated default times, is what
essentially constitutes the default model, and we will be more specific on this later. For now, suffice it
to say that we assume the existence of the inverse functionQ−1

i (·) which enables us to infer a default
time from a given drawn uniform default quantileui, i.e.

τi = Q−1
i (1 − ui) . (83)

In the case of a Gaussian copula the joint density becomes

ψ(τ ) = ϕ(y;R) ·
∣∣∣∣∂(y)

∂(τ )

∣∣∣∣ with ϕ(y;R) =
1√

(2π)n |R|
· e−

1
2
yTR−1y (84)

whereR represents the matrix of Gaussian correlation coefficients, and the connection between the
Gaussian variates and the default time draws is given by the cumulative normal and survival proba-
bility function:

Φ(yi) = 1 −Qi(τi) (85)

Since linear correlation coefficients between default times are very difficult to compare and estimate
from market observable prices or time series, it is generally advisable to use arank correlationcoef-
ficient instead. One such rank correlation measure is known asSpearman’s rhoand is nothing other
than the linear correlation computed from the marginal quantile variablesu. Luckily, there is a very
close relationship between the Gaussian correlation number%yiyj

and the quantile correlationρuiuj
,

namely

ρuiuj
=

6

π
· arcsin

(
1

2
· %yiyj

)
or equivalently %yiyj

= 2 · sin
(π

6
· ρuiuj

)
. (86)

The relationship is almost, albeit not entirely, linear, as shown in figure1.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

ρuiuj

%zizj

Figure 1: Spearman’s rho of correlated Gaussian variates. Not quite a straight line, but nearly.
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4.1 Hazard Rate Risk

The most common approach to associate potential default times with a survival probability is to use
the concept of an instantaneous forward hazard rate curveh(t):

Qi(τi) := e−Hi(τi) with Hi(τi) :=

∫ τi

0

hi(s) ds (87)

The exact form of the sensitivity of the value of a CDO to changes in the hazard rate curvehi(t) of
the ith underlying will depend on how that curve is constructed. In any implementation, in the most
general sense, acurvecan be defined by an interpolation rule and a set of parameters specific to the
interpolation rule. Of course, the interpolation rule may be given by a fully parametric description
of the curve depending on an arbitrary parameter vectorλi, or indeed, by two vectors of associated
numbers, namely abscissa and ordinate values, and a specifically chosen interpolation algorithm such
as piecewise constant (either left- or right-continuous in the interpolation points), piecewise linear,
natural splines, monotone cubic, or otherwise. Either way, the functional form of the hazard rate
curve will be of the form

hi(t) = hi(t; λi)

whereinλi represents the vector of parameters that could change whenever the credit default swap
rates of the associated underlying credit index vary. In the following, we will assume that the hazard
rate curve is defined by a vector of abscissa-ordinate pairs, and an interpolation rule. In other words
λkl refers to the hazard rate of credit numberk that prevails precisely at timetl, i.e.

λkl := hk(tl), (88)

given an arbitrary time discretisation of the hazard rate curvehk(t) over the timest0, t1, . . . , tm, with
t0 := 0, and a chosen interpolation rule.

Our first objective is now to derive the likelihood ratio required for the calculation of the parametric
sensitivity of any given credit derivative with respect toλkl,

ωλkl
:=

∂λkl
ψ(τ )

ψ(τ )
, (89)

whereinψ represents, as before, the joint probability density of the specifically drawn vector of default
times, and∂λkl

stands for the partial derivative∂/∂λkl. For this, we need to compute∣∣∣∣∂(y)

∂(τ )

∣∣∣∣ =
n∏
i=1

hiQi

ϕi
(90)

which follows directly from equation (85) by explicit calculation and wherein we have dropped the
explicit mentioning of the dependencies, i.e.hi = hi(τi), Qi = Qi(τi), andϕi = ϕ(yi). Combining
equations (84) and (90), we obtain

ωλkl
= yk∂λkl

yi −
n∑
j=1

yj %̃jk∂λkl
yk +

∂λkl
hk

hk
− ∂λkl

Hk (91)

where we have defined
%̃ij :=

(
R−1

)
ij
. (92)
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From (85), we derive

∂λkl
yi = δik

Qi

ϕi
∂λil

Hi (93)

which gives us

ωλkl
=
Qkyk
ϕk

∂λkl
Hk −

Qk

∑n
j=1 %̃kjyj

ϕk
∂λkl

Hk +
∂λkl

hk
hk

− ∂λkl
Hk (94)

The first order hazard rate risk formula (89) finally becomes4

ωλkl
=
∂λkl

hk
hk

+

[
Qk

ϕk
· (yk − ỹk) − 1

]
∂λkl

Hk (95)

with Hk(τk) andQk(τk) defined as in equation (87), and the variablẽyk standing for thek-th entry of
the solution vector̃y of the linear system

R · ỹ = y . (96)

The generic formulation of the second order sensitivity with respect to the hazard rate node levels is
given by5

ωλklλpq =
∂λklλpqψ

ψ
(97)

and by straightforward differentiation rules, we can re-express this as

ωλklλpq = ωλkl
ωλpq + ∂λpqωλkl

. (98)

The unknown term∂λpqωλkl
on the right hand side can be readily computed:

∂λpqωλkl
=

1

h2
k

[
hk∂λklλpqhk − ∂λkl

hk · ∂λpqhk
]
+

[
Qk

ϕk
· (yk − ỹk) − 1

]
∂λklλpqHk (99)

+
[(
∂λpqQk +Qk · yk · ∂λpqyk

)
(yk − ỹk) +Qk ·

(
∂λpqyk − ∂λpq ỹk

)] ∂λkl
Hk

ϕk
.

The term∂λpq ỹk is hereby, not surprisingly, given by thek-th entry of the solution vector∂λpq ỹ to the
linear problem

R · ∂λpq ỹ = ∂λpqy . (100)

Note that, from the fact that hazard rate curves of different credit entities are assumed to be indepen-
dent, and from equation (85), we have

∂λpqyk = δkp ·
Qk

ϕk
· ∂λkq

Hk . (101)

In the case of (left-continuous) piecewise constant interpolation, using the auxiliary definitions

γkl := ∂λkl
hk(τk; λ) = 1{τk∈(tl−1,tl]} (102)

and
κkl := ∂λkl

Hk(τk; λ) = 1{τk>tl−1} · (τk − tl−1) (103)

4It is the author’s pleasure to point out that the first derivation of the presented credit default swap rate delta, albeit in
different form and notation, was done by his former colleagues Mark Seaborne and Rhodri Wynne.

5The author is grateful to his former colleague Sanjeev Shukla for the implementation of the second order hazard rate
likelihood risk equations, and for the many numerical experiments he conducted to confirm their validatity.
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equations (95) and (99) can be simplified to

ωλkl
=
γkl
hk

+

[
Qk

ϕk
· (yk − ỹk) − 1

]
κkl (104)

and

∂λpqωλkl
= κklκpq ·

Qk

ϕkϕp
[δpk ((Qpyp − ϕp) (yp − ỹp) +Qp) −Qp · %̃pk] −

δpkδqlγkl
h2
k

. (105)

For the even more special case that we are only interested in second order derivatives with respect to
node levels of one and the same hazard rate curve, we have

∂λkq
ωλkl

= κklκkq ·
Qk

ϕ2
k

[Qk · (1 − %̃kk) + (Qkyk − ϕk) (yk − ỹk)] −
δqlγkl
h2
k

. (106)

4.2 Projection onto credit default swap rates

The risk figures that can be computed using the likelihood ratios derived in the previous sections are
with respect to the hazard rate levels prevailing at the nodes that are specific to the used interpolation
discretisation. In practice, we are usually more interested in the risk expressed as a sensitivity with
respect to what practically amounts to thetime-averagedhazard rates, i.e.

λ̂kl :=
1

tl

tl∫
0

hk(t) dt . (107)

For piecewise constant interpolation, we therefore have

tl · λ̂kl − tl−1 · λ̂k l−1 = ∆tl · λkl (108)

with ∆tl := tl−tl−1. This means, that given the sensitivities of the value of a derivativev with respect
to the hazard rate node levelsλkl, we have

∂λ̂kl
v =

l∑
j=1

∆tj
tl
∂λkj

v (109)

and

∂λ̂klλ̂pq
v =

l∑
j=1

q∑
r=1

∆tj
tl

∆tr
tq
∂λkjλprv . (110)

4.3 Correlation risk6

It follows from equation (84) that, in order to obtain

ωρij
=

∂ρij
ψ

ψ
, (111)

6The author would like to thank his former colleague Sanjeev Shukla for helpful discussions on the analysis in this
section.
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we need to calculate

∂ρij
ψ

ψ
=

∂ρij
ϕ(y;R)

ϕ(y;R)
= ∂ρij

lnϕ(y;R) = −1

2
· ∂ρij

(
y> ·R−1 · y + ln |R|

)
. (112)

Define1(ij) as the matrix whose sole non-zero entry is the element at position(i, j) with value 1.
Then, starting from

R ·R−1 = 1 , (113)

we have

∂ρij

(
R ·R−1

)
= 0(

1(ij) + 1(ji)

)
·R−1 +R · ∂ρij

(
R·−1

)
= 0

∂ρij

(
R·−1

)
= −R−1 ·

(
1(ij) + 1(ji)

)
·R−1

The likelihood ratio required for the calculation of the sensitivity of the contract value with respect to
one of the pairwise correlation coefficientsρij for i < j is therefore

ωρij
=

∂ρij
ψ

ψ
=

1

2
· y> ·R−1 ·

(
1(ij) + 1(ji)

)
·R−1 · y − 1

2
∂ρij

ln |R| . (114)

Using the generic linear algebra result that

∂mij
|M | = (−1)i+j · |M | ·

(
M−1

)
ij
, (115)

for any invertible matrixM , and that we only consider the upper right triangle of the correlation
matrix to have independent entries, we have

∂ρij
|R| = 2 · (−1)i+j · |R| ·

(
R−1

)
ij

(116)

and thus obtain

ωρij
=

1

2
· y> ·R−1 ·

(
1(ij) + 1(ji)

)
·R−1 · y − (−1)i+j ·

(
R−1

)
ij

(117)

which reduces to
ωρij

= ỹiỹj − (−1)i+j · %̃ij (118)

using the definitions (92) and (96).
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