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Abstract

The likelihood ratio method BG9€ provides a tool for the calculation of hedge ratios and
risk parameters with Monte Carlo calculations. In this article, we present the extension of existing
likelihood ratio methods to multiple underlyings and to higher order sensitivities such as the cross-
derivatives on the underlyings, and how the method can be used in a displaced diffusi@J[
framework. Next, an alternative likelihood ratio formula that can be used to compute sensitivities
with respect to market adjustments of forward contracts is given. We also derive the respective first
and second order hedge quantities with respect to the underlyings’ hazard rates for the correlated-
time-of-default modell[i00], as well as the corresponding correlation coefficient risk. In addition,
we show how the sensitivities with respect to model parameters can be converted into quantities
that are more meaningful to traders: exposures with respect to implied volatilities, or with respect
to credit spreads. In a nutshell: this is a collection of likelihood ratio formulee.

1 Introduction

The holy grail of numerical derivatives pricing is to find a fully generic method for the computation

of the risk-neutral value of fully generic derivatives structures with little effang to obtain all the
possibly relevant hedge ratio figures along with the prigghilst the need for hedge ratios is given

in all business areas for the purpose of dynamic replication and risk management, derivatives traders
in certain asset classes such as FX options go one step further: for many exotic structures, in fact for
most commoditised types of contracts, both parties of a deal not only agree on the price but also on the
delta hedge that would neutralise the position with respect to movements in the underlying FX rate (to
first order). This is done despite the fact that, strictly speaking, the used hedge ratios are effectively
the main strategic decisions made by the exotic derivative trader, with or without the support of exotic
pricing models. Naturally, the ability of a derivatives pricing utility to compute hedge ratios as well as
prices is also desirable where the spot sensitivity hedge is not explicitly part of the actual deal done.
There are several methods to compute the Greeks with Monte Carlo: brute-force finite differencing
by means of revaluation with changed parameters, pathwise differenti@tiot§ Jac04, equivalent
entropy projection method#\ye98 AG0Z], fully fledged Malliavin calculusfFLL ™99 and of course

the leaner cousin of Malliavin calculus: the likelihood ratio meth®@9q.

1.1 A brief review of the likelihood ratio method
Option pricing by Monte Carlo simulation amounts to a numerical approximation to an integral
o= [(5) v(s)ds ®
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wherer (S) is the (nungraire-denominated, e.g. discounted) payoff as a function of a future realisation
of a given set of underlying indices or assets denoted biumerically, we construct evolutions of

the underlying assets representeddygiven a risk-neutral distribution density(S). We hereby
typically construct the paths by the aid of a set of standard normal variates which corresponds to

vz/%w@w»w@mZ, @

with p(z) = fe"z and all dependencies on further pricing parameters (herein represented by
«) such as the spot level at inception, volatility, time to maturity, etc., are absorbed into the path
constructionS(z; o). Any derivative with respect to any of the parameters will thus suffer from
discontinuities ofr in S (or discontinuities of derivatives af with respect taS) since

%z/gﬂﬂmmwwm. 3)

Clearly, discontinuities of (or its derivatives with respect t® or any of the pricing or model param-
eters in the vectat) are commonplace in financial derivatives.

An intuitive way to understand thigelihood ratio method BG9q is to change our view that the
numéraire-denominated payoff depends orb’ which in turn depends on the integration variabje

and instead to go back to the original equati@hwherein notS buty = (S; «) is effectively a
function of the parameters, albeit that the functional dependence may be somewhat more compli-
cated. In other words, a transformation of the density is required to look at the pricing problem in the

form
Y (S;)

o[ o g ewm
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The calculation of the desired Greek now looks exactly like the original pricing problem, only with a
new payoff function

X(S;a) = 7(9) - w(S;a) (5)
with
31#((35;6!)

The termw(S; ) is often referred to as kkelihood ratio, whence the name of the method. Using
this definition, the Greek calculation becomes

o= [x(Sayusia)as )

with x(S; «) defined as in equatiord), i.e. each realised payoff in the simulation is simply weighted
with the likelihood ratiov(.S; ) in order to compute the desired Greek.

The beauty of this idea is that for the probability density functions that we typically use such as the one
corresponding to (geometric) Brownian motion, the funcfids; «) is € C* in the parametew and

thus doesn’t cause the trouble that we have when we approach the Greek calculation problem in the
form of equation2) by, say, finite differencing. The application is now straightforward. Alongside the
calculation of the option price, for each constructed path (in whatever representatig@part from
computing the payoff, also calculate the likelihood rat{®’; o), and multiply it with the payoffr(.5).



2 Transforming the joint density

Define X as a vector representing the evolution of thetate variables over all of a given setrof

time steps € {t1,...,t,n}. A d-dimensional process for the state variables thus meanthatR™

with n = d - m. Equally, definez € R™ as a vector otincorrelatedstandard normal variates. In the
following, we assume that the discretisation of the specific stochastic process at hand will be sampled,
ultimately, by drawing standard normal variates and thus we base all decompositions on a vector of
uncorrelated standard normal variates because ultimately all number generation (pseudo-random or
low-discrepancy) starts off with vectors of normal variates that are uncorrelated in the limit of many
draws. Of particular importance for all subsequent likelihood ratio method calculations is the global
covariance matrixC' of the realisation of all state variables at all future time horizons, i.e.

C= (X XT)—(X)(XT), ®)

where angle brackets denote expectation in the chosen risk-neutral measure. Also, we need to define
a pseudo-square rodtof C' such that

C=A-AT. (9)

Note thatA can be computed by the aid of a spectral split, a Brownian bridge decomposition, or by
Cholesky decomposition (which corresponds to incremental path constructid®)) Jac03. Since
each drawX (representing a full evolution of all state variables over all future time horizons of
interest) is fully determined by an underlying vector drawf standard normal variates, we can view
this as a transformation:

z - X=X(z). (10)

Clearly, the functionX = X (z) depends on further parameters given by any one specific pricing
problem at hand. In fact, the Greeks that we wish to calculate alongside our Monte Carlo simulation
to determine the risk-neutral value of a deal are the partial derivatives of the contract with respect
to these additional parameters that enter the transformati@n The joint multivariate probability
density describing the statistics of all of the elements of the veciegiven by

n

¢(2) = H () (11)
with |
p(z) = Nor: e z* (12)

as before. By virtue of the transformationQf, this can be translated into a joint density function
for X

w0 =02 53] 13)
provided that the Jacobian
_ (9X)
1-(5%) -

Is regular.

!Karatzas and Shreve call this matrixthe dispersion matrifKS91] (page 284).



3 Multivariate geometric Brownian motion

For many derivatives that depend on a multitude of underlying assets, multi-factor geometric Brown-
ian motion models are still an acceptable approach, especially when very little information on market
implied skews and smiles of the individual underlyings is available. In this context, we define

to represent the realisation of tixh state variable at timg;. Now, let us imagine that all Monte
Carlo paths are created in an incremental fashiioe.

d
1
Tji = T(-1)i + WAL — i E AjikZijk (16)
k=1

J d
1
= To + E (Muﬁtz - §Cm+ E alikzlkz) - (17)
=1

=1

Hereby, all of thez;;, for j = 1..m, &k = 1..d, are independent standard normal variates, and the
aj;, comprise the elements of the pseudo-square root of the covariance tiafok the time step

At; =t; —t;_4, as defined in equatio®). Equation {7) enables us to compute the elements of the
Jacobian matrix J as defined in equati@d)(

ox i
= aily<i (18)
k

Note that this means that all of the elements of the Jacobian matrix are constants, and therefore any
derivative of the Jacobian determinant with respect to either coordinate systam)(vanish. What'’s

more, equationl(8) clearly states that the Jacobian matrix is a function of the covariance matrix for
the time step, andot a function of the initial values of the state variables.

3.1 Sensitivities with respect to underlying assets

In order to compute the Greeks with respect to the initial values of the underlying assets, let us first
recall that, using the definition in equatiatbj,

0 1 0

- 1
0S; Soi O, ( 9)
and that 5 5 5
f— 71. p— . 72.
V@) = T 5 —6(z) = ofz) 17 5= 1] (20)

Fortunately, the second term on the right hand side is identically zero by virtue of equajpar(d
we can concentrate on the tegﬁ;gb(Z). From the definitions1(1) and (L2), we can readily see

0 L s
ik
= o) Y 21
3J:o¢¢<z) #2) o1 k:fjk Oxo; (1)

2In section3.5, we will generalise to arbitrary path decomposition.



whence

0 L s
— S : 22k
oV @) wwj;lz]k o (22)

In order to calculate the ternag;;, / 0z, we take the partial differential of equatiobd] with respect
to z;, bearing in mind that the indekin that equation is an integer in the ran@gem|. This gives

0z
0 = (5]1511 + Zaﬂk gk

k=1

2
Ot (23)

whered represents the Kronecker symbol. Let us now define the inverse of the dispersionMatrix
for time stept;,_; — t; as

B; = Aj‘1 ) (24)
This enables us to write ]
3z'k
%Joz = —;bjkifsjl(sil = - jkléjla (25)
and ;
0
— = — . bigr - 26
axOl@b(m) () ;Zuc 1kl (26)

Combining this with equation%) and (9), we finally obtain the likelihood ratio for the computation
of the sensitivity with respect to the initial value of asset #

d

z11b i

wa = DT (27)
k=1 '

Note that the only non-constant elements on the right hand side are the normal variates that are used
for the first step in the incremental path construction, despite the fact that the derivative contract
may contain an arbitrary payoff schedule along the path. This is a consequence of the telescopic (i.e.
additive) nature of equatiod7): any change of any underlying along the path could have been caused
by movements in the first step.

As for the second derivatives with respect to the initial values of the underlying assets, we proceed as
follows:

1
wry; = EaSOj (w ’ wAi) = wawa; + 8SOj (wAi) (28)
which leads to

d
B 5. WA b1kibix;
_WAZ'WAJ'_”S,_ S S
05 k=1 0:°07

wr;

(29)

Note that the last term is constant and can be pre-calculated. What's more, the expression
Z‘,ﬁzl bikibix; is equal to the entry in théth row andj-th column of the inverse of the covariance
matrix over the first time step. This can be seen as follows:

d d d

> bt = 3 (BB = (A1) (art), = ((a7) ) = ((aan) ) = (o), (30)
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A major caveat with respect to the application of the likelihood ratio method is the requirement of
non-singular covariance matrices. This, however, is perfectly consistent with the overall model de-
scription of correlated Brownian motion. Let us recall that the hedge ratios Delta and Gamma are
sensitivities with respect to the changes of the values of underlying assttey can occur dynam-

ically over the course of small time stepswiithin the model frameworkFor instance, the hedge

ratio Delta is computed as the number of underlying shares that have to be held against a short posi-
tion in a derivative contract in order to protect against losses in the hedged portfolio due to dynamic
movements of the underlying asset values, in the specified model framework. Any individual Delta
figure represents the number of shares that have to be held in order to protect against movements of
the associated asset alomeferis paribusi.e. whilst all other market parameters and asset values
remain unchanged. This is naturally impossible if we assume a singular correlation matrix to start
with. As an example, think of two assets with perfect correlation. hyislefinition of perfect corre-

lation impossible for one of the assets to move alone whilst the other remains unchanged. Therefore,
we cannot expect the likelihood ratio method to return sensible Delta and Gamma figures when the
provided correlation matrices are singuldhe likelihood ratio method provides Delta and Gamma
sensitivity numbers with respect to dynarmi@anges of the underlying securities.

3.2 Forward vega

In order to compute a measure for the sensitivity of an exotic option price with respect to the individual
coefficients representingplatility, let us first assume that any payoff function is a function of a vector

x of transformed state variables, andt a function of the volatility coefficients, neither directly,

nor indirectly. In a Gaussian Hull-White or extended Vasicek model, this precludes the possibility
of the payoff function requiring additional transformations framo a set of discount bond values
invoking functionals of the short rate volatility function(s). However, for interest rate models that are
based on the dynamics of market observables such as the BBMNYJ7, Jam9T and other market
models MSS97, or in the case of correlated geometric Brownian motion or displaced (geometric)
diffusion [Rub83, this restriction poses no difficultydZ99.

As a second assumption, let us take it as given that all volatilities are considered to be constant over
the time step;_; — ¢;. This can be interpreted as either the assumption of piecewise constant
instantaneous volatility, or as the computed exposure to be the sensitivity with respect to the root-
mean-square volatility over the time step. et denote the volatility coefficient of the underlying
financial variable #over time steg;_, — ¢;. For the purpose of Vega calculations, we thus need to
establish the volatility likelihood ratio

aéﬂ(w)
Wy = 1/}27;) : (32)
Now let us recall that we express the densify:) explicitly as a product of the joint density of inde-
pendent normal variates which are given by the inverse transformatiorz(x; o), and a Jacobian
determinant, i.e.

b(x) =" oz (m0)) . (32)

For the calculation of Delta and Gamma, there was no need to compute derivatives of the Jacobian
determinant with respect to the spot value of the underlying financial variable because the Jacobian
determinant does not depend on it. For Vega, however, the situation is different. The dengity
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depends on the volatility coefficients both directly in the Jacobian determamarindirectly due to
the inverse transformation — z = z(x; o). This means,

0 0

8(7]-1» &Tﬂ

O b(z (@) . (33)

JI! Jt.
|J]7 + |J] 905

U(x) = o(z(z0))-

In equation 18), we obtained the result that the Jacobian maifrias defined in equatiori{) is
of block-triangular form. Therefore, the Jacobian determindhts given by the product of the
Jacobian determinants of the block matrices that form the diagonal partnaimely by the product
of the determinants of the stepwise dispersion matrices, that is

1= 1114l (34)

At this point, it is conducive to make a specific choice as to how the covariance rogtfor time
stept;_; — t; is split into the pseudo-square radt. For this purpose, defin®; as the diagonal
matrix whose diagonal entries are given by the volatility coefficients, i.e.

‘gjik = ajiéik. (35)

Also, let R; be the correlation matrix for the time step; — ¢;. The covariance matrix can thus be
written as
Oj - @]R]@]At] (36)

In order to obtain a pseudo-square robtof C;, let us further define the matri@; given by the
product of the spectral pseudo-square root of the correlation matrix, and the square root of the time

stepAt;, i.e.
Q] = \/Rj . \/Atj (37)

Aj = @j . Qj . (38)

Given this formulation of the dispersion matrik;, it is clear that we have

and define

d
Al = 1Qs1 - [ ] o (39)
=1
and 5 5
Y oAt Yk q L
For 14 0 A7 (40)

This enables us to express the first term on the right hand side of equ)oan the following simple
and convenient way:

0

¢(z (z;0)) - Do

_ 1 _ 1
T = ——d(z(z0)) I = ——(=) (41)
aji Uji
The second term of equatioB83) can be expanded in analogy to equatiah){ and thus we have

1 k=m,l=d D21
Yla) = U(w)- [—— =) 2 | (42)

0'.4
I k=1,0=1
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In order to compute the ter@a;#, it is best to rewrite equatiori6) as
Ju

d
1
Tpn = .f(kfl)n + ,u;mAtk — éainAtk + Z Apnl Rkl - (43)
=1

Differentiating equation43) with respect tar;; yields

d d
Dagn Oz
0 = —0;;At; 610 nl=— - 44
0iAL; 0jk0in + ;Zkl Do, + lz:; ag laaji (44)
By virtue of equation38), we have
E)aknl 1
aO'ji O-jiajl Ik ( )
whence equatiordd) becomes
d d
0z 1
> aknzﬁ = (%Nj - ;%g%‘g) 0jkin - (46)
=1 J? g=1 J*

Using the inverse3, = A, this equation can be solved:

d d
8zkl 1
agji = ; bkln (UjiAtj — Z O_—ji&jingg> (5]k5m

g=1

d
1
= bjli (O’jiAtj — Z ;ajig2j9> 5jk . (47)

g=1 "'

Substituting this into equatio®) gives us

9 b(x) = () - zd:zb zdzia“ o oAn) L (48)
80'ji - JlY5li oo jik<jk il P .

=1 k=1 J*

Eventually, we obtain the following expression for the likelihood ratio for Vega:

d d d
1 1
Wo;, = — ( g zjkbjm) (E axjilzjl> — 0,iAt; ( E ijbjki) o (49)
k=1 =1 J

Jv k=1

3.3 Projection onto vega with respect to implied volatilities

The likelihood ration given by equatioA9) enables us to compute the sensitivity of an exotic deriva-
tive contract with respect to forward volatility coefficients. For hedging purposes, however, we are
usually more interested in sensitivities with respect to the implied volatilities of plain vanilla options
available in the market. This requires a transformation fagmto w, , where the hat on the volatil-

ity coefficient is to indicate that it is an implied volatility of plain vanilla options on the underlying
financial asset#with maturity¢;. The details for this transformation can be foundJad07 (section
11.9.1), and the resulting relationship is

Ws.. = Woo — Liiem | — 22— | Wory . - 50
" (UjAtj) s }<‘7j+1iAtj+1 i (50)

8




3.4 Displaced diffusion corrections

The likelihood ratio formulae derived in the previous sections are directly linked to the model assump-
tion of (correlated) geometric Brownian motion. It is possible, however, to adapt these formulae to
closely related modelling assumptions. One such example is tlismaced diffusiofRub83. In

this case, the dynamics of any one individual underlying asset \sahre given by

with
Y(t) = S(t) + A1) (52)

andA(t) being a time-dependent displacement whose evolution over time is determined by
A(t) = Aoeﬂt and Ay = =5 10g2 Q (53)

for some displacement coefficieft € (0,2). Given that the displaced diffusion model can be seen
as that of geometric Brownian motion of an affine transformation of the underlying asset, it is clear
that

oY,
WAgD = MADD . 0 (54)
0

Yo 830 ’

Since, as mentioned at the end of sectoh likelihood ratio Delta and Gamma sensitivity calcula-
tions are with respect to dynamic changes of the underlying asset, we have tg\asw

Yy, = Sy + A (55)

with Ay not being directly or indirectly dependent ¢fy. Therefore, the termY; /9.5, in equation
(54) is unity and we have

WAy, = Wiy, (56)
and
w?'go = w?';o : (57)

As for Vega, the situation is slightly different in the displaced diffusion setting. This is mainly due
to the fact that when we talk about Vega, we really are interested in a sensitivity with respect to the
implied Black volatility of plain vanilla options on the underlying assets since it is those

plain vanilla options that we would use for hedging purposes. Of course, using the volatility coef-
ficient likelihood ratio given in equatio) and the transformatiorb()), we can directly compute

the sensitivitydiy, /06, With respect to the displaced diffusion coefficiént. The sensitivity with
respect to the at-the-forward implied Black volatility is then given by

awoo _ 8'ébDD_ Dop

- = = - . 58
O0Black 0000 O0Black ( )
Define a simplified form of the (undiscounted) Black (call) option formula by
F F
B(F, K, () ::F-N(%%—%C)—K-N(%—%C) (59)



with F being the par forward price for maturifj, i the strike of the option, and = Ggackv/7 the
log-standard deviation of the log-normally distributed forward price.

Now, the implied Black volatility that corresponds to the at-the-forward price of a plain vanilla option
valued in the displaced diffusion setting is implicitly determined by

B (F +A(T), F + A(T), &DD\/T> ~ B <F F, &B.ack\/T> (60)
whence we have
8B(f’kag) . aCATDD — aB(f7 k)C) _Fr (61)
¢ £ ; f(ii(é:)) O0Black ¢ £ ; K
C = OA'DD T C = &Black\/f
Defining
9 = F+TA(T) (62)

and taking advantage of the specific structure of the Black option formula, we can put all of this
together to obtain

(63)

wgglack — W&DD . ac

o OB(f, k, ) / OB(f. k. () .
k
¢

0
9
G

Black\/T Y DD\/T

3.5 Global covariance path decomposition

In practice, we may prefer to construct paths of correlated geometric Brownian motion with methods
other than the straightforward incremental algorithm assumed in equafiénar(d (L7). Instead,

we may wish to use a spectral decomposition of the global covariance matrix, or a combination of
the Brownian bridge with spectral decomposition of the correlation between assets. In any case, we
can always assume that we have knowledge of all the enfrie$ a global covariance matri' that
determines the covariance of the realisation of any ofitassets at any of the points in time to any

other of the the assets at any other time. In order to reduce the number of indices, let us define

n:=m-d (64)
and use the convention that with= & - d + [, the variable

refers to the realisation of assétat time steg,.. Equally, with; = p-d+ ¢, let the covariance matrix
entry ¢;; denote the covariance of asséta# time step;, with asset # at time step,,. Also, let us

define .
& = InFy — S Gii (66)
where F},; stands for the par strike of a forward contract on asgebwaturing at timet,. Using this

enumeration scheme, a vector drawe R" tranforms into a realisation of the state variable vector
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Hereby, A represents the dispersion matrix, i.e. the pseudo-square root of the covariance(imatrix
that corresponds to the chosen path construction method. For incremental generation, the matrix
Is of triangular form; for a Brownian bridge method, it is sparse with some structure; and for the
spectral path construction method, it is a full matrix. The density of the state vectwrrather its
mean-corrected equivalent

Yy = — € ) (68)
is given by
_evhy (69)
with
D :=C*. (70)

Following a similar analysis to the previous sections, we can compute the likelihood ratio for the
sensitivity with respect to the forward vald€ (assuming the same enumeration scheme as far;the
in order to reduce the number of indices) as

Wr, = 8F1¢/¢
1
= 31«1-?/1‘ : ayi (—5 yTD y) )
1 n

wFi = E . ]Zldmyj . (71)

Similarly, the second order sensitivities,forward cross-Gammasurn out to be
WF; dij

G 72

wFiFj - wFinj - 5

The reader should note, however, that the above likelihood ratios are with respect to the movement of
asingleforward contract par strike. This means, if we wish to compute the spot delta, we need to use
the conversion

- OF (.a+1)
i = S P @
=1

The conversion formula for spot gamma clearly simply involves a double sum, respectively. The
above decomposition into forward deltas (and gammas) can be useful for two reasons. The first one
is that, in case the time between the valuation date and the first fixing date is short, the variance of
likelihood ratio term for sensitivity with respect to the first forward grows (ike; )~*/2 and can spoil

the whole calculation. A remedy for this can be to approximate the sensitivity with respect to the first
fixing with other means, and then to sum up the terms to obtain a spot delta. The second benefit of
forward delta calculations is that, for instance for equity underlyings, it allows us to correct for the
specific bespoke model for the connection between the spot, the forward, and any expected dividends
between now and the fixing date we wish to emplo¥his can be particularly pertinent for some

of the single stock hames that, relative to their current share prices, are expected to pay considerable
dividends in the near future, which can give rise to noticeable pricing and hedge ratio differences.

3The most commonly used formula for the forward is to subtract the net present value of dividend forecasts, but other
approaches such as to treat them as a mixture of absolute and proportional components are also in use.
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For the computation of the likelihood ratio associated with the sensitivity with respect to any of the
implied volatilities 5;, we use again the fact that the covariance matrix can be represented as the
product

C =0-R-0 (74)
with the entries of the diagonal matréx given by
0ii = 0ivtio (75)

and R being the global correlation matrix. The notatig; is to indicate that the indekis actually
given by thei = k - d 4+ [ with [ being the asset index ardbeing the time step index, i.€.= i%l.
This gives us immediately

05 |AI”" = 05, (W)_l
_ o, <\/\Rl T, &ftm)_l

= —1/(6:-|A]) , (76)
3@-%‘ = %51']" (77)
Os,dji; = _Cg_f((sij+5ik)7 (78)
and
Ws; = a&ﬂb/Qp = _&ii - %8&1(yTDy) (79)
which eventually leads to
w _i (‘_C”)id“ 1 (80)
o; a_z yz 1T p zjy] .

4 Likelihood ratio risk in a correlated-time-of-default model

A popular approach to value credit derivatives suclCa#iateralised Debt Obligationss to use a

model whose sole function is to govern the joint distribution of default times of different credit en-
tities. When default times are drawn from the joint distribution by means of first generating code-
pendent uniform variates coupled via a Gaussian copula, and then using the individual marginal
distributions associated with the individual underlyings, the framework is often also referred to as

a correlated-time-of-default modednd sometimes as th& model [LiO0]. This modelling approach

Is very convenient due to the comparative ease of implementation and the resulting speed when used
with Monte-Carlo simulations, as well as the availability of analytical solutions when the correlation
structure is restricted to specific forms\[v03)].

In a model that is reduced to the distribution of default times ofitlwaderlyings that are part of the
credit derivative contract, the value of the deal can be written as

v = /7r(7') () dr” (81)
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wherer () is the discounted payoff as a function of a future realisation of.tdefault timesr; for
i = 1..n, andy(7) denotes the joint probability density of the default times. The joint distribution of
the default times is in turn given as

(1) = C(u) (82)

whereC'(u) is a copula as a function of the default quantiltesand the marginal distributions of

the default times are given by, (r;) for ¢ = 1..n. The connection between the default quantiles,

or alternatively the survival probabilitie; := 1 — u;, and the associated default times, is what
essentially constitutes the default model, and we will be more specific on this later. For now, suffice it
to say that we assume the existence of the inverse fun€idi+) which enables us to infer a default
time from a given drawn uniform default quantilg i.e.

= Q (1 —w) . (83)
In the case of a Gaussian copula the joint density becomes
a(:u) H 1 _1 TR-1
7#("’) = gO(y, R) . ‘— with gO(y7 R) e - X Y (84)
(T) (2m)" |R]

where R represents the matrix of Gaussian correlation coefficients, and the connection between the
Gaussian variates and the default time draws is given by the cumulative normal and survival proba-
bility function:

P(yi) = 1—Qi(m) (85)

Since linear correlation coefficients between default times are very difficult to compare and estimate
from market observable prices or time series, it is generally advisable toras& aorrelationcoef-

ficient instead. One such rank correlation measure is knov@paarman’s rh@and is nothing other

than the linear correlation computed from the marginal quantile variablésickily, there is a very

close relationship between the Gaussian correlation numpgrand the quantile correlatiop,,.,,
namely

6 ) 1 . AL
Puju; = — arcsin (5 . Qyiyj> or equivalently g, = 2-sin <E . puiuj> . (86)
The relationship is almost, albeit not entirely, linear, as shown in figure

1

0.5

Puju; 0

-0.5

-1 -0.5 0 0.5 1

QZZ'Zj

Figure 1. Spearman’s rho of correlated Gaussian variates. Not quite a straight line, but nearly.

13



4.1 Hazard Rate Risk

The most common approach to associate potential default times with a survival probability is to use
the concept of an instantaneous forward hazard rate cuftye

Ti

Qi(r) = e with  Hi(n) = / ha(s) ds (87)
0

The exact form of the sensitivity of the value of a CDO to changes in the hazard ratehg(tvef
the " underlying will depend on how that curve is constructed. In any implementation, in the most
general sense, @rvecan be defined by an interpolation rule and a set of parameters specific to the
interpolation rule. Of course, the interpolation rule may be given by a fully parametric description
of the curve depending on an arbitrary parameter vextpor indeed, by two vectors of associated
numbers, namely abscissa and ordinate values, and a specifically chosen interpolation algorithm such
as piecewise constant (either left- or right-continuous in the interpolation points), piecewise linear,
natural splines, monotone cubic, or otherwise. Either way, the functional form of the hazard rate
curve will be of the form

hi(t) = hi(t; A:)

wherein\; represents the vector of parameters that could change whenever the credit default swap
rates of the associated underlying credit index vary. In the following, we will assume that the hazard
rate curve is defined by a vector of abscissa-ordinate pairs, and an interpolation rule. In other words
A refers to the hazard rate of credit numbdhat prevails precisely at time, i.e.

e i= hi(ty), (88)

given an arbitrary time discretisation of the hazard rate chgye) over the times,, ¢4, . .., t,,, with
to := 0, and a chosen interpolation rule.

Our first objective is now to derive the likelihood ratio required for the calculation of the parametric
sensitivity of any given credit derivative with respect\g,

Wy, = a>\kl1/}<’r>’ (89)

U(T)

whereim) represents, as before, the joint probability density of the specifically drawn vector of default
times, and,,, stands for the partial derivative/0\.;. For this, we need to compute

1 M@
— H1 > (90)

which follows directly from equation85) by explicit calculation and wherein we have dropped the
explicit mentioning of the dependencies, ig.= h;(7;), Q; = Q:(1;), andy; = ¢(y;). Combining
equations§4) and Q0), we obtain

a,\klhk
R,

Wy = YkOrgYi — Z Yj 0k O, Yie + — Oz Hi (91)

j=1

where we have defined
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From @5), we derive

a)\klyi = 5@'1@%8)\”[—[2' (93)
which gives us
Qr D7) Okjyj O h
o, = O g DR Oy Ol (94)
Pk Pk hy.
The first order hazard rate risk formulggj finally become$
Ox, h .
Way = A;Ll £+ L (Yr — Ur) — 1| O, Hi, (95)
k Pk

with Hy (1) andQy () defined as in equatio{), and the variablg, standing for thé:-th entry of
the solution vectof; of the linear system

R-y=y. (96)

The generic formulation of the second order sensitivity with respect to the hazard rate node levels is
given by

9]
nn = et (97)
and by straightforward differentiation rules, we can re-express this as

wAkMpq = w,\klw,\pq + c%pqwm . (98)

The unknown ternd,  ws,, on the right hand side can be readily computed:
8 = e e — O b Oy B @ Jk) — 1| Oron H 99
ApgWA = h_i[ EOXN A e — OXg Ik = Oy k} + E : (yk_yk) - Akt Apg 11K (99)

_ v O He
[0, Qe Qi i~ On ) (e = ) + Qu - (O = On )] ==

The termd, i, is hereby, not surprisingly, given by tieth entry of the solution vecta?,  y to the
linear problem
R- aqu@ = 8quy . (100)

Note that, from the fact that hazard rate curves of different credit entities are assumed to be indepen-
dent, and from equatior8%), we have

Onpg Uk = Okp * % * Oxgy Hi - (101)

In the case of (left-continuous) piecewise constant interpolation, using the auxiliary definitions

Vet = aAkzhk(Tk;)‘) = 1{‘%6(151717&}} (102)

and
Rl = aAlek(Tk;)\) = ]-{Tk>tl,1}'(7-k_tl*1) (103)

“It is the author’s pleasure to point out that the first derivation of the presented credit default swap rate delta, albeit in
different form and notation, was done by his former colleagues Mark Seaborne and Rhodri Wynne.

5The author is grateful to his former colleague Sanjeev Shukla for the implementation of the second order hazard rate
likelihood risk equations, and for the many numerical experiments he conducted to confirm their validatity.
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equations 95) and @9) can be simplified to

Wrg = h_k: g: (yk - yk) 1| K (104)
and
- N OO,
aquwMz = KkiKpq - & [5pk ((prp - (10;0) (yp - yp) + Qp) — Q- ka] - pk—qﬂkl . (105)
PrPp hk

For the even more special case that we are only interested in second order derivatives with respect to
node levels of one and the same hazard rate curve, we have

5ql’7kl

1

Oy W = Fkibikg - % [Qr - (1 — Orr) + (Qryr — or) (Yr — Ti)] —
k

4.2 Projection onto credit default swap rates

The risk figures that can be computed using the likelihood ratios derived in the previous sections are
with respect to the hazard rate levels prevailing at the nodes that are specific to the used interpolation
discretisation. In practice, we are usually more interested in the risk expressed as a sensitivity with
respect to what practically amounts to tirae-averagedhazard rates, i.e.

t

At = tl / hi(t) dt . (107)
l
0

For piecewise constant interpolation, we therefore have
oA =t e = Al - Ay (108)

with At; := t,—t,_1. This means, that given the sensitivities of the value of a derivativigh respect
to the hazard rate node levelg, we have

At;
05,0 = Z tlﬂ Oy v (109)
7=1
and
At; At,
gy ZZ Al (110)
7j=1 r=1

4.3 Correlation risk®

It follows from equation 84) that, in order to obtain

= '””w (111)

Wo; b

6The author would like to thank his former colleague Sanjeev Shukla for helpful discussions on the analysis in this
section.
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we need to calculate
apijw — apij cp(y, R)
Y o(y; R)

Define1;;, as the matrix whose sole non-zero entry is the element at positighwith value 1.
Then, starting from

1 -
aﬂi]’ In @(y; R) = _5 ’ aﬂi]’ (yT R t Y+ In |R|) : (112)

R-R' = 1, (113)

we have
8p, (R-R7") = 0
(L +1Go) B+ R0y, (RTY) = 0
Oy (RT) = =R (1 +1gy) - R

The likelihood ratio required for the calculation of the sensitivity of the contract value with respect to
one of the pairwise correlation coefficients for : < j is therefore

Opiy ¥

Woy; = =

1 _ _ 1
’ §-yT-R (g +1lgy) RNy — 53%. In|R|. (114)
Using the generic linear algebra result that

6mij |M| - (_I)H_j ) ’M| ’ (M_l) ) (115)

ij
for any invertible matrix)/, and that we only consider the upper right triangle of the correlation
matrix to have independent entries, we have

Opy IRl = 2-(=1)"7-|R|- (R7"),, (116)
and thus obtain
1 - B P
Wiy = 9 yT' R (1(ij) + 1(]’75)) "Rty — (=1 (R 1)1’]’ (117)
which reduces to o
W = Uil — (1) gy (118)

using the definitions92) and ©6).
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