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First version: 24th November 2013
This version: 25th March 2016

Abstract

Improving on [Jäc06] and [Vog07], we show how Black’s
volatility can be implied from option prices with as little as
two iterations to maximum attainable precision on standard
(64 bit floating point) hardware for all possible inputs. The
method is based on four rational function branches for the
initial guess adapted to the log-moneyness x, two of which
are combined with non-linear transformations of the input
price, and the use of the convergence order four House-
holder method which comprises a rational function of the
residual. Despite sounding difficult, the method is simple
in practice, and a reference implementation is provided
at [Jäc13]. As was perhaps previously underestimated, of
crucial importance for the precision of the implied volatility
is a highly accurate Black function that minimizes round-
off errors and numerical truncations in the various para-
meter limits. We implement the Black call option price
by the aid of Cody’s [Cod69, Cod90] rational approxim-
ation for the complementary error function erfc(·) and its
little known cousin, the scaled complementary error func-
tion erfcx(·). The source code of the reference implement-
ation is available at www.jaeckel.org/LetsBeRational.7z.

1 Introduction

In [Jäc06], we provided a robust and comparatively effi-
cient method to imply the volatility σ̂ from the undiscoun-
ted price p̃ of an option via the Black formula

B(F,K, σ̂, T, θ)

= θ ·
[
F · Φ

(
θ ·
[

ln(F/K)

σ̂·
√
T

+ σ̂·
√
T

2

])
(1.1)

−K · Φ
(
θ ·
[

ln(F/K)

σ̂·
√
T
− σ̂·

√
T

2

])]
where θ = 1 for call options and θ = −1 for put options.
The starting point was gaining a fundamental understand-
ing of the difficulties involved, which lie largely with the
fact that the Black function permits no Taylor expansion
around σ̂ = 0 when F 6= K. Based on the asymptotics of
the Black function for small and large values of σ̂, the key
components of the method published in “By Implication”
were:-
∗OTC Analytics

• Separate the input price domain into a lower and an
upper half at the point of inflexion of B over σ̂.

• In the upper half, estimate an initial guess on a func-
tional form that is essentially a linear rescaling of the
asymptotics for large σ̂.

• In the lower half, estimate an initial guess based on a
geometric interpolation between the initial guess func-
tion for the upper half, and a functional form that, in a
certain sense, dominates the asymptotics for small σ̂.

• Define an objective function based on the price error
in the upper half, and based on the reciprocal of the
logarithm of the price in the lower half.

• Invoke an iteration procedure known as Halley’s
method of convergence order three on the respective
objective function.

It was clear in [Jäc06] that this can, for very low input prices
p̃, still lead to the requirement for a significant number of
iterations1. It has since been pointed out [Vog07] that this
can be improved upon by the aid of a different functional
form for the asymptotics for low σ̂. In this article, we will
review and refine some of the choices made in [Jäc06] to
arrive at an industrial solution that for standard IEEE 754
(53 bit mantissa) floating point hardware converges to the
maximum attainable accuracy within two iterations for all
possible inputs. In a nutshell, the new method can be sum-
marized as follows:-

• Define four segments for the initial guess function, all
of which use rational approximations.

• The highest and lowest segments are defined via non-
linear transformations that ensure the correct asymp-
totic behaviour of the initial guess function to first or-
der, not just dominance.

• Define three branches for the objective function, based
on the reciprocal of the logarithm of the price for the
lower branch, the price itself in the middle branch, and
the logarithm of the distance of the price from its limit
value for infinite volatility for the upper branch.

1E.g., see that in figure 6 in [Jäc06] the number of iterations for a
relative accuracy of 10−8 in implied volatility goes as high as 10.
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• Use two iterations of the third order Householder iter-
ation method which is a rational function of the object-
ive residual and has convergence order four [Hou70].

In order to avoid any misunderstandings, we state at this
point the purpose of this communication. The aim of the
method presented here is not to provide 15 digits of ac-
curacy of implied volatility for trading purposes, or for the
sake of gaining an intellectual understanding of the rela-
tionship between volatility and option price. This would
of course be ridiculous. For the latter, the publications
by Brenner and Subrahmanyam [BS88] and Corrado and
Miller [CM96, CM04] are excellent resources. Indeed,
Corrado and Miller themselves emphasize that that is the
aim of their own publication, and that for industrial applic-
ations, numerical solutions should be employed. The pur-
pose of this communication, instead, is to satisfy that in-
dustrial need. One of the main reasons is that the Black for-
mula has become an integral part of many analytical repres-
entations of other models and approximations, and is part
of a range of analytical transformations. In those applica-
tions, the Black formula can end up being used with input
parameters that, per se, in the context of a trading desk’s
purposes, would never be encountered, and, all this may
yet be combined with numerical calibration routines which
may end up exploring even more extreme input parameters.
And of course it isn’t just about the mapping from volatil-
ity to option prices, but the reverse, too, is needed. For the
sake of brevity, we name but three such analytical mapping
situations: the representation of 1) CEV volatility, 2) dis-
placed diffusion volatility, and 3) dividend model process
volatility as a Black implied volatility smile, especially, for
short maturities. Also, in some applications, local volatility
is numerically computed from implied volatility and its de-
rivatives up to second order2 via finite differencing by the
aid of their analytical relationship, e.g., [BBF02, equation
15]. It is in these applied analytical calculations when prac-
titioners really should be able to use the Black formula and
its inverse to reproduce inputs close to within machine ac-
curacy, just as we would demand for the exponential func-
tion and the natural logarithm, or for the sine and cosine
functions and their inverses. What’s more, the calculation
of implied volatility may be part of analytical computations
that reside within modules that are executed a great many
number of times (e.g., in local volatility precomputations
on a refined grid), and for that reason, may need to be very
fast, in addition to accurate.

For the sake of at least partial completeness, we include
a brief literature review. Li [Li06] gave a rational approx-
imation for |x| ≤ 1/2 and σ > |x|/2 (though we were only
informed of his work after having conducted the research
presented here). This range of parameters is not even wide
enough for normal trading desk purposes, and the accuracy

2Numerical differentiation inherently loses accuracy, requiring the
underlying function to be of significantly higher precision. As a rule of
thumb, if a function f has relative accuracy ε, then its numerical second
order derivative f ′′ can only attain

√
ε , i.e., half on a logarithmic scale.

of the approximations is only about 10−2. Vogt [Vog07],
as already mentioned, points out that the method described
in our previous publication on the subject suffers from an
increased required number of iterations when the strike is
close to the forward and the input price is very low. Vogt
gave an improved asymptotic guess for this parameter re-
gion based on a transformation to Lambert’s W function,
which preserves the correct asymptotic behaviour as the in-
put price goes to zero. This was indeed the original start-
ing point of the work presented here, only that we avoid
the Lambert W function and instead express all transform-
ations (used in aid of correct asymptotics) in terms of the
cumulative normal function Φ(·) and its inverse since we
already have those as part of our standard financial ana-
lytics library. Grunspan [Gru11] demonstrates impressive
stamina and gives higher order asymptotic expansions de-
rived by the aid of the formal transseries framework, but
we make no use of those results here.

2 Preliminaries

Instead of the standard Black function (1.1), we prefer to
work with the normalization

x := ln(F/K) (2.1)

σ := σ̂
√
T (2.2)

b(x, σ, θ) := B(F,K, σ̂, T, θ)/
√
FK (2.3)

= θ ·
[
e
x/2 · Φ(θ[x/σ + σ/2]) (2.4)

−e
−x/2 · Φ(θ[x/σ − σ/2])

]
The normalized Black function (2.4) satisfies the
“reciprocal-strike-put-call invariance”

b(x, σ, θ) = b(−x, σ,−θ) (2.5)

and the “time-value-put-call invariance”

b(x, σ, θ)− ι(x, θ) = b(x, σ,−θ)− ι(x,−θ) (2.6)

with

ι(x, θ) :=
(
bmax − b−1

max

)
+

(2.7)

and
bmax := e

θx/2 . (2.8)

From here on, we shall only deal with out-of-the-money
call options, i.e., the case θ = +1 and x ≤ 0 which is
without loss of generality by virtue of the invariances (2.5)
and (2.6). With this restriction, we have the bounds

0 ≤ b ≤ bmax ≤ 1 (2.9)

with
bmax

∣∣∣
θ=1

= e
x/2 . (2.10)
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3 Asymptotics

In [Jäc06], we gave the asymptotic behaviour of b for small
and large σ, which (for θ = +1 and x ≤ 0) are:-

lim
σ→0

b ≈ x · ϕ(x/σ) ·
(σ
x

)3
(3.1)

lim
σ→∞

b ≈ bmax − 4/σ · ϕ(σ/2) (3.2)

which can be derived using [AS84, (26.2.12)]. With the
same formula, we can convert (3.1) and (3.2) to

lim
σ→0

b ≈ 2π|x|
3
√

3
· Φ
(
−|x|√

3 σ

)3
(3.3)

lim
σ→∞

b ≈ bmax − 2Φ(−σ/2) (3.4)

which is accurate to asymptotic first order in σ and 1/σ,
respectively. Note that both of these expressions can be
solved for σ, i.e., these are invertible asymptotics. Expres-
sion (3.4) was of course already given in [Jäc06]. Expres-
sion (3.3), however, is new. We mention that it is in spirit
similar to the non-linear transformation to Lambert’s W
function in [Vog07] which we will not use here. The reason
for this is our application: our aim is to have an industrially
accurate and fast implementation. Since we already have
a precise implementation of the cumulative normal and its
inverse, and since the Lambert W function requires a good
deal of attention in its own right if we wish to achieve high
accuracy [Veb09], we prefer not to introduce yet another
special function. What’s more, the implementation of the
Lambert W function, apart from being typically iterative
itself, involves more exponentials or logarithms than the
cumulative normal and its inverse, and that is something
we definitely wish to avoid as we shall explain later. We
point out that in [Jäc06] we only used a functional form
for the limit σ → 0 that would dominate the correct solu-
tion in a way that enabled us to obtain a viable initial guess
for the subsequent root finding. In fact, this was precisely
the reason that, for very low volatilities, the method there
required an ever increasing number of iterations. Here, in
contrast, formula (3.3) is asymptotically correct to first or-
der, and hence, the limit of σ → 0 is a case where our
initial guess will become increasingly accurate, as we will
see soon.

4 The initial guess in four branches

The normalized Black function (2.4) has a single point of
inflexion at (σc, bc) given by

σc =
√

2|x| (4.1)

bc = b(x, σc) (4.2)

where we have dropped θ since we are only dealing with
out-of-the-money call options, i.e., θ ≡ 1. For σ < σc,
b(x < 0, σ) is convex, and for σ > σc it is concave,

whence, having zero slope at both ends of its range, it is
of sigmoid shape. In its central region, near σc, with that
point being a turning point, it is comparatively linear. To
take advantage of this near-linearity in the central section
for an initial guess, we need to identify a lower and an up-
per limit of this as yet only vaguely defined central region.
An obvious and easy choice is to draw a tangent through
the point (σc, bc), and let the location of the intersections of
this tangent with the limit levels of b be the lower limit σl
and the upper limit su, i.e.,

σl := σc −
bc

b′(σc)
(4.3)

σu := σc +
(bmax − bc)
b′(σc)

(4.4)

with

b′(σ) := d
dσ b(x, σ) (4.5)

= 1√
2π
· e−

1
2

[
( xσ )

2
+(σ2 )

2
]
. (4.6)

We denote the points on the curve b(x, σ) over σ at the
locations σl and σu as (σl, bl) and (σu, bu), i.e.,

bl = b(x, σl) (4.7)

bu = b(x, σu) , (4.8)

as is shown in figure 1 for |x| = 4. We use the locations

σc

bc

σl

bl

σu

bu

bmax

b(x,σ)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  1  2  3  4  5  6

Figure 1: The construction of the two branch locations σl and σu from
the tangent at the inflexion point (σc, bc) for |x| = 4.

σl, σc, and σu as three branching points to divide the range
of σ ∈ [0,∞) into four segments. This translates into a
segmentation for the initial guess function into the zones
[0, bl), [bl, bc], (bc, bu], and (bu, bmax) which we show in fig-
ure 2 as a function of |x| (as usual for x ≤ 0, θ = +1).

Having defined four distinct interpolation zones for the
initial guess, we now proceed to its specification. We use
the notation σ(β) to represent the exact implied volatility
that solves

b(x, σ) = β (4.9)

for σ from a given normalized price β. Obviously, any input
β must be in the range [0, βmax) with βmax ≡ bmax. We denote
σ0(β) as the initial guess function.
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Figure 2: The four zones of the initial guess function.

In the two central regions [bl, bc] and (bc, bu], we know
that σ(β) is linear to second order near bc and only mod-
eratly curved at the outside ends of the two zones. Here,
we take note of the extensive literature on the subject of
function approximation. By far the most commonly used
approach, especially for high-efficiency implementations,
is to approximate the target function as a rational function,
i.e., as the ratio of two polynomials, on carefully selected
regions. Often, this is combined with non-linear transform-
ations that are specific to each interpolation zone in order
to match certain asymptotic features of the target function.
In practical applications, this approach is behind the im-
plementation of virtually any special function. In this con-
text here, we mention three examples of particular relev-
ance, namely, the cumulative normal function and its cousin
the error function [Mar04, Cod69, Cod90, Mic93b], the in-
verse cumulative normal function [Wic88], and of course
the Lambert W function [Veb09], though there are entire
libraries of special functions based on rational approxim-
ations, e.g., [Mic93a]. Also, Halley’s iteration method is
ultimately based on a rational form as is its generalisation
to higher order, the Householder method [Hou70]. For uni-
variate functions, extensions of the Remez algorithm can
be used to find rational approximations that are numeric-
ally effectively optimal in the sense of the minimax solu-
tion, and this is how most of the above mentioned rational
approximations were computed. It is in principle possible
to extend this to two dimensions when there is an extra
dependency (as is the case with σ(β) which also depends
on x), though, the resulting formulae can readily involve
a significant number of coefficients, rendering it more ef-
ficient to use a rational approximation for an initial guess
and combine this with a very small number of iterations.
We therefore make the rational choice (pun intended), and
use a low order rational approximation to σ(β) as our initial
guess σ0(β) in the central sections. For this purpose, we
use the rational cubic interpolation method of Delbourgo
and Gregory [DG85] which we have grown to like as some-
thing of a supercharged swiss army knife when it comes to
general purpose interpolation techniques.

Given an interval [xl, xr], function values fl = f(xl) and
fr = f(xr), and slope values f ′l = f ′(xl) and f ′r = f ′(xr),

the rational cubic interpolation f rc(x) reads

f rc(x;xl, xr, fl, fr, f
′
l , f
′
r, r) = (4.10)

frs
3 + (rfr − hf ′r)s2(1− s) + (rfl + hf ′l )s(1− s)2 + fl(1− s)3

1 + (r − 3)s(1− s)
with

h := xr − xl , and s := (x− xl)/h . (4.11)

The parameter r is a control parameter that can be chosen
freely subject to r > −1, else the interpolation would incur
a pole inside [xl, xr]. In the limit of r →∞, the rational cu-
bic interpolation converges to a linear form. Delbourgo and
Gregory [DG85] also provide simple conditions for r such
that the interpolation preserves monotonicity [their equa-
tion (3.8)] and convexity [their equation (3.18)], when the
input data permit it. Conveniently, it is easy to configure r
to meet a given second derivative of f(·) at either the left
hand side edge of the interpolation bracket as

rl(xl, xr, fl, fr, f
′
l , f
′
r, f
′′
l ) =

1
2hf

′′
l + (f ′r − f ′l )
∆− f ′l

(4.12)

or, respectively, at the right hand side edge via

rr(xl, xr, fl, fr, f
′
l , f
′
r, f
′′
r ) =

1
2hf

′′
r + (f ′r − f ′l )
f ′r −∆

(4.13)

with ∆ := (fr − fl)/h. We choose the parameter r such
that, on both the centre left and the centre right segment,
respectively, we obtain a rational interpolation form that
matches the second derivative of σ(β) in the inflexion point
bc, subject to the aforementioned monotonicity and convex-
ity restrictions. We compute the second derivative σ′′(β)
from

d
dβσ(β) = 1

b′ (4.14)

d2

dβ2σ(β) = d
dβ

(
1
b′

)
= d

dσ

(
1
b′

)
· d

dβσ(β)

= − b′′

b′ 3
(4.15)

whence

σ′′(β)
∣∣
β=bc

= − b′′(σc)

b′(σc)
3 = 0 (4.16)

due to b′′(σc) ≡ 0. This gives us the initial guess function
in the centre left region

σ0(β)
∣∣∣
β∈[bl,bc]

= f rc
cl(β) (4.17)

with

f rc
cl(β) = f rc(β; bl, bc, σl, σr, 1/b

′
l, 1/b

′
c, r[bl,bc]

) (4.18)

and

r[bl,bc]
= rr(bl, bc, σl, σc, 1/b

′
l, 1/b

′
c, 0) , (4.19)

and in the centre right region

σ0(β)
∣∣∣
β∈(bc,bu]

= f rc
cr(β) (4.20)
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with

f rc
cr(β)=f rc(β; bc, bu, σc, σu, 1/b

′
c, 1/b

′
u, r(bc,bu]) (4.21)

and

r(bc,bu] = rl(bc, bu, σc, σu, 1/b
′
c, 1/b

′
u, 0) . (4.22)

We note that the extra calculation effort required for the
evaluation of the respective rational cubic interpolation for-
mulae over and above what already has been computed is
only

b′(σl) when β ∈ [bl, bc]
b′(σu) when β ∈ (bc, bu] .

The evaluation of the rational cubic form itself is very little
effort. Depending on the hardware and compiler, the CPU
effort is little more than, or possibly the same as, the evalu-
ation of a single vega expression b′(σ).

In the upper region β ∈ (bu, bmax), we use the asymptotic
formula (3.4) to define a non-linear transformation fu(β) of
σ(β) that is asymptotically linear in β when β → bmax:

fu(β) := Φ(−σ(β)/2) (4.23)

We approximate this function by a rational cubic interpol-
ation that matches its level, slope, and second derivative at
the left edge of the interval, and its level and slope at the
right edge, using

f ′u(β) = −1
2 · e

1
2
x2

σ2 (4.24)

f ′′u (β) =
√

π
2 ·

x2

σ3 · e
x2

σ2 +σ2

8 (4.25)

and

lim
β→bmax

fu(β) = 0 (4.26)

lim
β→bmax

f ′u(β) = −1
2 (4.27)

wherein σ = σ(β). This gives us

f rc
u (β) := f rc(β; bu, bmax, fu(bu), 0, f ′u(bu), −1/2, r(bu,bmax))

(4.28)

with

r(bu,bmax) = rl(bu, bmax, fu(bu), 0, f ′u(bu), −1/2, f
′′
u (bu)) .

(4.29)

The initial guess in the upper region is then composed by
solving (4.23) for σ, and replacing f rc

u for fu:

σ0(β)
∣∣∣
β∈(bu,bmax)

= −2 · Φ−1(f rc
u (β)) . (4.30)

This leaves us to define the initial guess function for the
lower region β ∈ [0, bl). Here, we make use of the asymp-
totic form (3.3) to define the non-linear transformation

fl(β) := 2π|x|
3
√

3
· Φ(z)3 with z := −|x|√

3 σ(β)
(4.31)

which is asymptotically linear in β when β → 0. Con-
tinuing with our rational theme, we approximate this func-
tion, too, by the Delbourgo-Gregory interpolation, match-
ing level and slope at either end of the region, and setting
the control parameter r to match the second derivative at
the right hand side edge. For this, we compute

f ′l (β) = 2π · z2 · Φ(z)2 · ez2+σ2

8 (4.32)

f ′′l (β) = π
6 ·

z2

σ3 · Φ(z) · e2z2+σ2

4 · (4.33)

·
(

8
√

3 σ|x|+
(
3σ2(σ2 − 8)− 8x2

)
· Φ(z)
ϕ(z)

)
and

lim
β→0

fl(β) = 0 (4.34)

lim
β→0

f ′l (β) = 1 (4.35)

wherein, as before z = −|x|/√3 σ and σ = σ(β), to obtain

f rc
l (β) := f rc(β; 0, bl, 0, fl(bl), 1, f

′
l (bl), r[0,bl)

) (4.36)

with

r[0,bl)
= rr(0, bl, 0, fl(bl), 1, f

′
l (bl)f

′′
l (bl)) . (4.37)

The initial guess in the lower region is then the result of
solving (4.31) for σ, and replacing f rc

l for fl:

σ0(β)
∣∣∣
β∈[0,bl)

=

∣∣∣∣∣ x√3

[
Φ−1

(√
3 · 3

√
f rc
l (β)/2π|x|

)]−1
∣∣∣∣∣ .

(4.38)

The net function σ0(β) divides into four branches:

σ0(β) =



see expression (4.38) for β ∈ [0, bl)

f rc
cl(β) for β ∈ [bl, bc]

f rc
cr(β) for β ∈ (bl, bu]

−2 · Φ−1(f rc
u (β)) for β ∈ (bu, bmax)

(4.39)

Overall, it is of class C1 with σ′′0(β) being discontinuous
at β = bl and β = bu, and σ′′′0 (β) being discontinuous
at β = bc. We show examples of σ0(β) for four different
values of x in figure 3. The quality of the approximation
speaks for itself.

5 Rational iteration

Having established the initial guess function σ0(β), with
β being the normalized input price, we now determine the
iteration procedure to obtain an accurate implied volatility
figure. To specify the iteration, we need to choose a) an
objective function, and b) the iteration functional.
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Figure 3: Four examples of the initial guess function σ0(β).

Assuming as before that we have used the invari-
ances (2.5) and (2.6) to transform to the case of x ≤ 0 and
θ = 1, we define the objective function in three branches
according to

g(σ) =


1

ln(b(σ)) −
1

ln(β) for β ∈ [0, bl)

b(σ)− β for β ∈ [bl, b̃u]

ln
(

bmax−β
bmax−b(σ)

)
for β ∈ (b̃u, bmax)

(5.1)

with
b̃u := max(bu, bmax/2) (5.2)

where we have again suppressed the dependence of the nor-
malized Black function b on x. The respective transforma-
tions in (5.1) have been chosen to improve the convergence
of the respective Lagrange inversion series of g(σ). In com-
mon parlance, this means that we chose the objective func-
tion branches in order to make the inverse of the objective
function well approximated by a low order local rational
approximation.

In order to find the sought implied volatility, we need to
locate the the root of g(σ). For this, we use an iterative
procedure. Whilst most practitioners are familiar primarily
with the Newton-Raphson method, there are in fact quite
a few generic techniques for this purpose in the literature.
In [Jäc06], we used Halley’s method which consists of a
rational function of order (1, 1) of the residual g(σ), i.e., it
can be written as the ratio of a polynomial of first order in
g divided by another polynomial of first order in g.

Other authors have suggested the use of the Chebyshev
method which is a second order polynomial in g, which
means the iteration would have the form

σCheby
n+1 = αCheby

n + γCheby
n gn + δCheby

n g2
n (5.3)

with gn := g(σn) and all coefficients being functions of σn
that, generically, do not become small or infinite as g → 0
(whence they do not affect convergence considerations). In
comparison, Halley’s method takes on the form

σHalley
n+1 =

αHalley
n + γHalley

n gn

1 + δHalley
n gn

. (5.4)

In aid of clarification, we mention that both Halley’s and
Chebyshev’s method are of the same convergence order,
i.e., order three, and that, in fact, Chebyshev’s method is
identical to a second order Taylor expansion of Halley’s
method, and, in turn, Halley’s method is identical to the
Padé(1,1) approximant (which is a kind of rational func-
tion expansion of the same convergence order) of Cheby-
shev’s method. The reason we chose Halley’s method, and
not Chebyshev’s method in [Jäc06] was that, in general, ra-
tional function approximations tend to be more flexible and
are overall preferred3, though as for the convergence order
there is of course no difference whatsoever.

When it comes to the choice of an iteration procedure for
the purpose of high accuracy solutions, we have the choice
between either going for a higher convergence order, hop-
ing to need fewer iterations, or to save the effort to compute

3To highlight this point we quote from [PTVF92] on the subject of
(rational) Padé approximants: “It is sometimes quite mysterious how
well this can work” and “Padé approximation has the uncanny knack of
picking the function you had in mind from among all the possibilities.”.
This is followed by some caveats that we need not worry about here
since we choose our objective function to be amenable to rational ap-
proximation, and since we are guaranteed to be close to the solution by
the excellent quality of our initial guess, thus receiving the full benefit
of the local rational approximation of the inverse function.
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the extra coefficients, and carry out more iterations. As a
rule of thumb, when the effort to compute derivatives of the
objective function is higher than the evaluation of the ob-
jective function itself, it is advisable to use a lower order
method and iterate more, else, use a higher order method
with fewer iterations. In our context, the higher order de-
rivatives of the objective function are all easier to compute
than the objective function itself. This is ultimately be-
cause Φ(·) is more effort to evaluate than ϕ(·). A generic
iteration procedure of arbitrary order d is Householder’s
method [Hou70] given by

σn+1 = σn + d · (1/g)(d−1)(σn)

(1/g)(d)(σn)
. (5.5)

The first and second order versions are identical to the
Newton-Raphson and Halley’s method, respectively. We
have chosen to use the third order method

σn+1 = σn + νn ·
1 + 1

2γnνn

1 + νn
(
γn + 1

6δnνn
) (5.6)

with

νn := − g(σn)
g′(σn) , γn := g′′(σn)

g′(σn) , δn := g′′′(σn)
g′(σn) , (5.7)

which, somewhat confusingly, whilst being the third or-
der Householder method, is of fourth order convergence
in the residual error. We remark that the third or-
der Householder method is a rational function of or-
der (2, 2) in the residual g. We spare the reader
the listing of all the involved terms of the third or-
der Householder method for all three branches of g(σ)
but mention that they are explicitly given in the source
code comments of the reference implementation available
at www.jaeckel.org/LetsBeRational.7z [Jäc13]. Preempt-
ing our numerical results later on somewhat, we mention
that the combination of our four-branch initial guess func-
tion, with our three-branch objective function, and the third
order Householder method enables us to attain the max-
imum achievable accuracy on standard IEEE 754 (53 bit
mantissa) floating point hardware with exactly two itera-
tions for all possible input values. The subtle point here
is the maximum achievable accuracy which surprisingly
strongly depends on the implementation of the (normal-
ized) Black function that we use in our iteration, as we shall
discuss in the next section.

Remark 5.1. The reason for the choice of the third order
method is the balancing of comparative efforts. With a
second order method (e.g., Halley’s), we would often need
three iterations to reach maximum accuracy. On the other
hand, to obtain full attainable precision with a single itera-
tion we would either need to go to at least 14th order (i.e.,
15th order of convergence), or improve our initial guess
by at least two decimal orders of magnitude in its weakest
points which invariably would be numerically more effort
than an additional iteration of the third order Householder
method. As a compromise, we have settled for the initial
guess function presented in section 4 and combined it with
two iterations of the third order Householder method.

6 The Black function

Irrespective of any transformations we may choose in our
target objective function whose root will be our sought im-
plied volatility number, such as those given in (5.1), we in-
evitably need to evaluate the Black function which is con-
ventionally implemented directly in the form in which it is
written. In our case, for the normalized Black function (2.4)
with x ≤ 0 and θ = 1, this means we take the numerical
difference of two exponentially weighted cumulative nor-
mal functions:

b = Φ(h+ t) · φ − Φ(h− t)/φ , (6.1)

with
φ = e

x/2 , h := x/σ , and t := σ/2 . (6.2)

When both 0 < |x| � 1 and σ � 1, as is the case for
almost all options that are near the money, this means that
we have φ ≈ 1, and the numerical value of b is domin-
ated by the result of the subtraction of two cumulative nor-
mal function values of nearby arguments, centred around
Φ(h) ≈ 1/2. This poses one of the most common and stand-
ard problems of error propagation in numerical analysis:
the divergence of the relative error of a function defined as
a difference, also known as Subtractive Cancellation. The
error analysis of this case, to first order, is as follows. First,
denote by εi a real-valued number that is randomly4 some-
where in the range [−ε, ε] where ε is defined as the IEEE
64 bit constant DBL EPSILON. Since all numerical evalu-
ations are only accurate to within ε on a relative scale, when
numerically evaluated, the normalized Black function actu-
ally returns

b ≈ Φ(h+ t)(1 + ε1) − Φ(h− t)(1 + ε2) (6.3)

where we have dropped φ since it is a number near 1 and
irrelevant for our analysis. By expansion, this becomes

b ≈ Φ(h)(1 + ε1) + ϕ(h)t(1 + ε1) (6.4)

− Φ(h)(1 + ε2) + ϕ(h)t(1 + ε2)

≈ 2Φ(h)ε3 + 2ϕ(h)t(1 + ε4) (6.5)

≈ 2ϕ(h)t+ 2 [Φ(h)ε3 + ϕ(h)tε4] (6.6)

where we have consolidated ε1 − ε2 ≈ 2ε3 and ε1 + ε2 ≈
2ε4. This makes the relative numerical evaluation error

bnumerical

bexact
− 1 ≈ Φ(h)ε3 + ϕ(h)tε4

ϕ(h)t
(6.7)

≈ 1

t
· Φ(h)

ϕ(h)
· ε3 (6.8)

for small t. As t → 0, the relative error grows like the
inverse of t, and there is nothing we can do about it. Unless,
that is, we don’t carry out the subtraction in (6.1) in the first

4The shape of the distribution is irrelevant here: we only need to
know the attainable range.
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place! The obvious thing to do is to use a Taylor expansion
in t around zero. Don’t! Remember that the main reason
that computing implied volatilities is so difficult is the fact
that the Black function does not permit a Taylor expansion
around σ = 0 (unless x ≡ 0) since all of its derivatives
in σ = 0 are identically zero! Unfortunately, this dilemma
is not resolved by viewing the Black function as weighted
differences of Φ(h ± t), with h and t as defined in (6.2),
keeping h constant, and expanding in t. If you try this,
you will find that some of the coefficients still diverge such
that your numerical results are spoiled when σ is very small
unless you keep increasing the expansion order to ludicrous
levels. So, instead, we reformulate the normalized Black
function according to

b = Φ(h+ t)eht − Φ(h− t)e−ht (6.9)

= 1√
2π
· e−

1
2

(h2+t2) · [Y (h+ t)− Y (h− t)] (6.10)

with

Y (z) :=
Φ(z)

ϕ(z)
(6.11)

which we show in figure 4. The advantage of casting the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10-z

Y(z)

  

√
π
2

Figure 4: The function Y (z).

normalized Black function in this form is that the expres-
sion

[Y (h+ t)− Y (h− t)] (6.12)

permits a perfectly usable Taylor expansion in t for h ≤ 0,
even when h is exactly zero, and that is how we do it.
We skip the details of the actual expansion and refer the
reader to the code comments in the reference implement-
ation in [Jäc13], though we mention that we use it when
t < τsmall with τsmall := 2 16

√
ε ≈ 0.21 (and |h| not too large).

We show two examples as to how noisy the Black func-
tion b(x, σ) can be as a function of σ, on a relative scale,
in figure 5, in comparison with the results we obtain when
using an expansion of expression (6.12) in t. Note that the

-4e-13
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-1e-13

 0

 1e-13
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 4e-13
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ν
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direct evaluation
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-1e-07
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 3e-07

 4e-07

-2E-07 -1E-07 0 1E-07 2E-07
ν

x = -1E-10

σmid =  1E-09

direct evaluation

via expansion

Figure 5: Two examples for the noise on the Black function when eval-
uated directly, in comparison to the use of an expansion of expres-
sion (6.12). The abscissa ν is the relative distance to an arbitrarily
chosen mid value σmid. The ordinate is the function value’s relative dis-

tance from its value in the centre, i.e.,
b(x,σmid·(1+ν))

b(x,σmid)
− 1.

abscissa ν in the shown examples is directly the scale of
relative accuracy of the implied volatility σ. It is clear that
any root-finding procedure cannot resolve a root σ∗ below
a relative resolution of ∆ν if the objective function appears
to have multiple roots within σ∗±∆σ with ∆σ = ∆ν ·σ∗.
This is what we alluded to earlier when we referred to the
maximum attainable accuracy: in order to be able to com-
pute implied volatility to a relative accuracy of, say, 10−15,
we first need to have a Black function that near the solution
is smooth down to the same relative accuracy.

Unfortunately, the previously handled region is not the
only area where the conventional implementation of the
Black function suffers catastrophic loss of accuracy. An-
other such region is the limit of large but negative h ≡ x/σ
even when σ itself is not small at all. In this case, the Black
function may not incur any significant subtractive cancel-
lation of cumulative normal function values since it is very
possible that the two evaluations Φ(h±t) are of largely dif-
ferent orders of magnitude. The problem here is different
in nature, and comes down to the inevitable loss of accur-
acy of the cumulative normal function itself as is explained
in the excellent article by George Marsaglia [Mar04]. The
cause of this is that all implementations of the cumulative
normal function of a large negative argument in some way
or another involve an evaluation of the exponential func-
tion with a large and negative argument. Unless we imple-
ment our own exponential function, we are therefore at the
mercy of the platform’s built-in exponential function which
tends to be a low-level assembler function call, and, typ-
ically, only gives us about 14–15 decimal digits of relative
accuracy for large negative arguments. This teaches us two
lessons. The first is that we should avoid (whenever af-
fordable on balance) computing the Black function as the
difference of terms involving individual exponential terms
since this exacerbates the loss of accuracy due to subtract-
ive cancellation. The second is that we may prefer formula-
tions that have fewer exponential function evaluations when
available. In the region of large negative h, we can realize
these preferences by the aid of the formulation (6.10) for
the normalized Black function, and make use once again of
the asymptotic expansion [AS84, (26.2.12)] to write Y (z)
as the rational function

Y (z) ≈ 1
z −

1
z3 + 1·3

z5 + . . .+ (−1)n1·3...(2n−1)

z(2n+1) (6.13)

when z � 0. Note that this is a divergent series which
means that for any value of z, there is a critical level for
n beyond which the approximation series worsens as you
increase n. In other words, there is some optimal level n
where the relative error of the approximation series com-
pared to the exact value of Y (z) is minimal. Obviously, the
larger |z|, the larger the optimal level n at which the relative
error is minimal. We found that for n = 17, the approxim-
ation series has a maximum relative error of 1.64 · 10−16

for all z ≤ −10, which makes it accurate to within the
best attainable limit on 64 bit floating point hardware. In
order to avoid any subtractive cancellation in the normal-
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ized Black function when h < hlarge, with hlarge := −10
(and t somewhat smaller than |h|), in addition to minimiz-
ing the exponential noise, we proceed as follows. We use
the asymptotic series (6.13) with n = 17 and substitute it
into [Y (h+ t)− Y (h− t)] in (6.10), and analytically eval-
uate and simplify the resulting expression (which is of con-
siderable length), in order to take advantage of all possible
analytical cancellations of terms such as +t and −t. The
resulting asymptotic expression, whilst somewhat lengthy,
turns out to give us a reliable and smooth normalized Black
function that enables us to compute implied volatilities even
when x approaches the absolute lower limit5 on 64 bit hard-
ware, which is about -707.

When neither t � 1, nor h < hlarge, as we mentioned
above as the lessons we learned from George Marsaglia’s
excellent article, we should still avoid computing the Black
function as the difference of terms involving individual ex-
ponential terms, or at least minimize the number of expo-
nentials, and so we stick with the formulation (6.10). Here,
we take advantage of the fact that Y (z) is related to the
little known special function called the scaled complement-
ary error function erfcx() via the simple relationship

Y (z) = 1
2 ·
√

2π · erfcx(−z/√2 ) . (6.14)

Since there is a highly accurate and efficient numerical im-
plementation for erfcx() based on rational approximations
involving at most one exponential function evaluation, we
at least halve the noise level. Otherwise, if we go the con-
ventional route to evaluate b(), we incur at least one ex-
ponential inside the implementation of the cumulative nor-
mal function, and another one for each of the scaling terms
e+x/2 and e−x/2, resulting in the subtraction of two terms
that each involved two exponentials. What’s more, for
x ≥ 0.46875, Cody’s implementation in [Cod69, Cod90]
of erfcx(x), is given only as a rational function approx-
imation, which means that we obtain Y (z) represented by
a pure rational approximation, without any exponentials,
when z ≤ −0.66291260736239.

Having emphasized the benefits of the formula-
tion (6.10), we must, alas, make an exception when b() is
dominated by the first of the two terms in the Black formula
when expressed as (6.9). We then retain more relative ac-
curacy by not attempting to combine the two terms in any
way, and sticking with the formulation (6.9). As a rule of
thumb, we do this when t > 0.85 + |h| (with h ≤ 0 and
θ ≡ 1 as before). We then use the equality

Φ(z) = 1
2 · erfc(−z/√2 ) (6.15)

and evaluate Cody’s [Cod69, Cod90] implementation of
the complementary error function erfc() which contains a
round-off limiting technique specifically aimed at the inac-
curacy of the exponential function for large negative argu-
ment mentioned in George Marsaglia’s article. Whenever

5The limit for x is determined by the minimum attainable ratio of
F/K, which is about 10−307, making xmin ≈ ln(10−308) ≈ −707.

e−y
2

for sizeable y > 0 is required, instead, the product of
two exponential evaluations is computed, one aiming at the
magnitude of the result, and one aiming at the fine resolu-
tion according to

e−y
2

= e−ỹ
2 · e−(y−ỹ)·(y+ỹ) (6.16)

where ỹ is chosen to give the overall magnitude (down to
one 16th) as

ỹ :=
by · 16c

16
. (6.17)

This does not completely solve the issue, but it helps a long
way. It is worth mentioning that this technique is also used
in other implementations, e.g., the one given in [Mic93b].

We show in figure 6 the four different evaluation zones
for the normalized Black function for h ≤ 0 and θ ≡ 1. In

t

|h|

 0

 0.5

 1

 1.5

 2

 2.5

 0  2  4  6  8  10  12

I.
II.

III.

IV.

Figure 6: The four different evaluation regimes of the normalized Black
function in the (h, t)-plane with h = x/σ, t = σ/2, x ≤ 0, and θ = 1.

summary, these are, in order of precedence:-

I. (|h| > |hlarge|) ∧ (t < |h| − |hlarge| + τsmall) with
τsmall = 2 16

√
ε ≈ 0.21: substitute the series approxim-

ation (6.13) of order n = 17 into (6.10). Analytically
simplify the sub-expression (6.12)

[Y (h+ t)− Y (h− t)]

after the substitution (6.13) to take advantage of exact
cancellation of terms such as +t and−t. The net result
gives the sub-expression (6.12) as a rational function
of h, multiplied with one exponential.

II. t < τsmall: substitute a twelvth order Taylor expansion
of the sub-expression (6.12)

[Y (h+ t)− Y (h− t)]

in t around zero in the normalized Black function for-
mulation (6.10).

III. t > 0.85 + |h|: evaluate b() as the exponentially-
weighted difference of cumulative normals as given
in (6.9). Use a highly accurate version of the
cumulative normal such as mapping it to Cody’s
erfc() [Cod69, Cod90] via (6.15).

IV. everywhere else: evaluate b() in the formulation (6.10)
with Y () being computed via (6.14) by the aid of
Cody’s erfcx() [Cod69, Cod90].
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Finally, we mention that there is yet another reason for
loss of accuracy, though this one is directly for the implied
volatility, and not for the Black function. This happens
when the input price is near the maximum: β . bmax. In
this limit, the relevant quantity of information content is the
difference from the maximum, namely (bmax − β), and the
relative accuracy of the output implied volatility can only
be expected to be as good as

bmax

bmax − β
· ε (6.18)

with ε being as before the relative hardware accuracy. The
problem here is unsurmountable. It is caused by the fact
that the input number β, when it is, say, within 10−m (relat-
ive) of bmax, only contains approximately (Nε−m) decimal
digits of relevant information, with Nε := | log10(ε)|, and
thus we cannot produce a result that has the full Nε digits
of accuracy. This, limit case, however, is in practice of no
concern since this is the situation of volatilities and prices
being so high that prices have no discernible vega. What’s
more, whilst we do in practical calculations encounter low
volatility scenarios of any imaginable magnitude, the ultra-
high volatilities just don’t arise. We will, however, in our
numerical charts see the gradual increase of the residual
noise level in the limit of β → bmax.

7 Numerical results

We now show a number of graphs with numerical results.
First, in figures 7 and 8, we show two diagrams depicting
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Figure 7: Relative accuracy |∆σ
σ
| for (|x|, σ) ∈ [0, 3]× [10−7, 1.22].

relative residual errors of implied volatilties for a range of
(x, σ) pairs, very similar to figures 8 and 9 in [Jäc06]. Note
that these results here, whilst being of significantly smaller
relative error, have been computed with exactly two House-
holder(3) iterations as described in section 5. The residuals
are against an original value of σ from which a normalized
Black value was computed that in turn was the input price
to the implied volatility calculation.
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Figure 8: Relative error |∆σ
σ
| for (|x|, σ) ∈ [0, 10−5]× [10−5, 0.18].
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Figure 9: Relative accuracy |∆σ
σ
| for (|x|, σ) ∈ [0, 16]× [10−5, 7.07].

In figure 9, we show the same relative error after two it-
erations for a much wider range in both |x| and σ. Here,
we can see the onset of the loss of accuracy mentioned at
the end of section 6 due to the Black function values ap-
proaching its maximum. Specifically in this figure, on the
line x = 0, the input β is above 90% of the maximum
bmax(x = 0) = 1 on the leftmost ten out of a total of 29
plot grid nodes, explaining why the residual error begins to
grow in the left hand side corner of the diagram.

In figure 10, we show the relative error of the initial
guess, and after one, two, and three Householder(3) iter-
ations on a linear scale of β/bmax to the left, and on a logar-
ithmic scale to the right, for |x| = 1/2. The mentioned “pin
locations” are the interpolation nodes of the initial guess
at β = bl, β = bc, and β = bu. We compare this with
the residual errors when we iterate with Halley’s method
in figure 11, and with Newton’s method in figure 12. We
show the same set of data in figures 13, 14, and 15 for
|x| = 32. In that latter set of data, specifically in fig-
ure 14 for |x| = 32, we see on the logarithmic scale an
example where two iterations of Halley’s method fail to
give us full attainable precision, which is symptomatic for
large |x|. This is why we overall chose to use two iterations
of the Householder(3) method whose extra effort over Hal-
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Figure 10: Residual relative errors for |x| = 1/2.
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Figure 11: Residual relative errors for |x| = 1/2 with Halley’s method.
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Figure 12: Residual relative errors for |x| = 1/2 with Newton’s method.
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Figure 13: Residual relative errors for |x| = 32.

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1β/bmax

Halley for |x| = 32

log10(|σ
0 iterations

/σ−1|)

log10(|σ
1 iteration

/σ−1|)

log10(|σ
2 iterations

/σ−1|)

log10(|σ
3 iterations

/σ−1|)

log10(DBL_EPSILON)

pin locations

-16

-14

-12

-10

-8

-6

-4

-2

 0

-100 -80 -60 -40 -20  0
log10(β/bmax)

Halley for |x| = 32

log10(|σ
0 iterations

/σ−1|)

log10(|σ
1 iteration

/σ−1|)

log10(|σ
2 iterations

/σ−1|)

log10(|σ
3 iterations

/σ−1|)

log10(DBL_EPSILON)

Figure 14: Residual relative errors for |x| = 32 with Halley’s method.
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Figure 15: Residual relative errors for |x| = 32 with Newton’s method.

ley’s method is negligible in comparison to the evaluation
of the normalized Black function required in each iteration.

As for its execution speed, the presented method eval-
uates a single implied volatility with two iterations on a
standard computer in just under one microsecond most of
which is spent in the normalized Black function. This
is more than 5 times faster than the algorithm of [Jäc06]
which takes about 5 microseconds on the same hardware
when configured to have comparable accuracy, specifically,
1E-15. The speed advantage goes down to only about 30%
when the algorithm of [Jäc06] is evaluated with a target
precision of 2E-12 (though at that level we could here get
away with just one iteration most of the time, and perhaps
increase the Householder order by one). It is clear that
the algorithm of “By Implication” converges relatively eas-
ily, on average, to that lesser accuracy (albeit that it needs
more iterations), but requires significantly more effort to
then home in on the higher precision. The difficulty of con-
vergence to high accuracy is caused by the much noisier
normalized Black function used there. The net effect is that
each single iteration of “By Implication” is faster than here,
which is due to the simpler, but much noisier, normalized
Black function, but high accuracy is very difficult to attain
for the very same reason. On a like for like comparison,
i.e., when using the same normalized Black function, the
algorithm of “By Implication” will be significantly slower
overall since it will almost everywhere need more itera-
tions, and will be much slower in all those low volatility
regions where it was previously identified to need signific-
ant numbers of iterations.

8 Conclusion

We have introduced an algorithm for the calculation of
Black implied volatility that can for all intents and pur-
poses be considered to be within attainable machine ac-
curacy where the latter is defined to mean within what
can be supported by the used normalized Black function.
This has been accomplished by combining a four-branched
initial guess function based on two asymptotically correct
transformations and rational function approximations, with
two iterations of the Householder(3) root finding algorithm.
The objective function is separated into three branches, the
top and bottom of which involve non-linear transforma-
tions. Crucially, the objective function is based on a high-
accuracy and low-noise implementation of the normalized
Black function, which turns out to be a problem as difficult
as implied volatility calculation in its own right.

We mention that the mere two steps of our House-
holder(3) procedure can, instead of viewing them as numer-
ical iteration, also be seen as an analytical approximation
based on the recursive definition

σ(β) = σHH3(σHH3(σ0(β))) (8.1)

where ς → σHH3(ς) is defined to be the Householder(3)
propagation step σn → σn+1 given in (5.6), and σo() is our
initial guess function (4.39). The twice-recursive formula-
tion (8.1) of the solution presented here might help assuage
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the concerns of those who intrinsically dislike numerical
solutions.

A reference implementation of the discussed new
method for implied Black volatility is available
at www.jaeckel.org/LetsBeRational.7z [Jäc13], including a
total of 187 figures demonstrating the accuracy in various
parameter regions.
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