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1 Introduction Univariate problems

Why

Financial calculations often result in “closed-form” solutions that involve
special functions such as erf(), erfc(), or erfcx(), and many others.

However, on a computer, all maths has to be reduced to simple additions.
Even multiplications (done by the aid of the logarithmic scale).

Speed is important.
Even for the inverse cumulative normal function Φ−1(·), some firms de-
veloped in-house versions that use CPU-specific low-level vector floating
point instructions (mainly for their Monte Carlo engine).

Some software providers’ business is based on the replacement of computa-
tionally intensive evaluations by (barycentric Chebyshev) interpolation(!).

We also find many inverse problems, where nonlinear equations must be
solved, thus implicitly defining new (special) functions, e.g., (the reduced
form of) implied normal volatility [Jäc17].
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Parameter-dependent problems

1 Introduction Parameter-dependent problems Implied Black volatility

The need for speed: Implied Black volatility.

A well known tier 1 bank identified that a significant portion of their server
farm time was spent in the calculation of Black implied volatility.

They engaged a team of academics to find an efficient implied Black
volatility algorithm.

(plug warning...)

I recommend “Let’s Be Rational” [Jäc15] which does this in

less than 700 nano-seconds

on an i5-7200U (fanless notebook CPU) for all possible parameter input
values to full attainable1 standard 64-bit floating point precision.

1Note that the input values may not admit the inference of all mantissa digits due to
intrinsic loss of precision such as is the case for in-the-money options.
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1 Introduction Parameter-dependent problems Strike-from-delta-with-premium in FX

The need for speed: Strike-from-delta-with-premium in FX.

In FX, for many currency pairs [RW10], implied volatility σ̂ is quoted over
delta-with-premium2

∆̃ := ∆−B(F,K, σ̂, T, θ)/F (2.1)

where B(F,K, σ, θ) is the Black formula and θ := ±1 for calls/puts.

In actual calculations, we need to know what strike K is implied by the
given volatility and delta-with-premium ∆̃.

2We assume forward deltas which can be imputed from spot deltas where required.
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1 Introduction Parameter-dependent problems Strike-from-delta-with-premium in FX

After reduction to convenient form, this means we need to solve

f(y;α) = ln |2 · ∆̃|+ α2

2
(2.2)

with
f(y;α) := ln(2 · Φ(−y)) + α · y (2.3)

α := θ · σ̂ ·
√
T (2.4)

y := ln(K/F )/α+ α/2 (2.5)

for y, and then set

K = F · eαy−
α2

2 . (2.6)

Conventional wisdom resorts to iterative solvers here: often, the Brent
algorithm3 is used in this context.

We can do better
(

: to be published. . .
)
.

3which should only ever be a method of last resort
Peter Jäckel (VTB Europe SE) Industry-grade function approximation October 2019 6 / 98

Simple classic methods



2 Simple classic methods Polynomial methods Taylor and inverse Taylor

Everybody knows Taylor expansions.

f(x) = f(x0)+f ′(x0) ·(x−x0)+f ′′(x0) · (x−x0)2

2 +f ′′′(x0) · (x−x0)3

6 + . . .
(3.1)

Usefully, and arguably less well known, when we need the inverse of

y = f(x) , (3.2)

near x0, we can use the Lagrange inversion theorem:

x = x0 +

∞∑
n=1

gn
n!

(y − f(x0))n (3.3)

gn = lim
x→x0

[
dn−1

dxn−1

(
x− x0

f(x)− f(x0)

)n]
(3.4)

⇒ g1 = 1
f ′(x0) , g2 = − f ′′(x0)

f ′(x0)3 , g3 = 3f ′′(x0)2−f ′(x0)f ′′′(x0)
f ′(x0)5 , . . .

See also [AS84, Formula 3.6.25] for the first 7 explicit terms.
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2 Simple classic methods Rational functions Padé expansions

Consider a function that permits a Taylor expansion4

f(x) =
∑∞

i=0 aix
i (3.5)

with positive convergence radius (remember e−
1
x2 ?).

We usually5 find that f(x), instead of by its N th order Taylor expansion

f(x) ≈
∑N

i=0 aix
i , (3.6)

is better approximated by a Padé(m,n) expansion

R(m,n)(x) :=

∑m
j=0 pjx

j

1 +
∑n

k=1 qkx
k
, (3.7)

for at least one pair of m and n such that m+ n = N .

Rational functions of order N are a richer set than polynomials of order N .

4not necessarily around zero — assumed here without loss of generality
5There is no guarantee here but in practice this tends to be the case.
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2 Simple classic methods Rational functions Householder’s method

Householder’s method [Hou70; Wik19] is designed as an iterative procedure
to solve f(x) = 0 for x via

xn+1 = xn + HHd(xn) (3.8)

with

HHd(x) := d · g
(d−1)(x)

g(d)(x)
and g(x) :=

1

f(x)
. (3.9)

It has convergence order d+ 1.

With ν := −f(x)/f ′(x) and hk := f (k)(x)/f ′(x), we have:-

HH1 = ν /* Newton’s method */ (3.10)
HH2 = ν

1+h2ν/2
/* Halley’s method */ (3.11)

HH3 = ν(1+h2ν/2)
1+ν(h2+h3ν/6) (3.12)

HH4 = ν(1+ν(h2+h3ν/6))
1+ν(3h2/2+ν(h2

2/4+h3/3+h4ν/24))
(3.13)
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2 Simple classic methods Rational functions Householder’s method

With ν being the increment of the standard Newton method, the HHd step
(for d > 1) has the form of an R(d−1),(d−1)(ν) rational function of ν.

This is by design!
(symmetric rational function approximations of

the form Rm,n(·) where m = n typically work best)

The method is immensely powerful but, sadly, rarely used in financial maths.

An often overlooked use of Householder’s method is that it represents

a rational function approximation for the inverse of any function f(x)

in the vicinity of any desired expansion centre xc:

x(y) ≈ xc + HHd(xc) (3.14)

with
ν := y−f(xc)

f ′(xc)
and hk := f (k)(xc)

f ′(xc)
. (3.15)
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3 General Caveats Polynomial versus rational |x|: a kinky tale

Polynomial versus rational approximations

In all that follows:

We (at most) ever assume that the approximand f(x) is continuous,

i.e., f(x) ∈ C0, not more.

Polynomial versus rational function approximations

Much is being advertised that polynomials (can) have spectral convergence
properties, i.e., like e−n.

However, this is at most true for smooth functions!

A kinky tale

Take the function
f(x) := |x| (4.1)

as the archetype for any function with a kink.
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3 General Caveats Polynomial versus rational |x|: a kinky tale

Polynomial approximants for |x| of degree n converge [Lip09; New64]

worse than 1/n.

NOT EVEN LINEAR!

In contrast, there are rational approximations [Akh29; New64] that

converge better than 3 · e−
√
n .

Similar results exist for other functions where polynomials converge slowly.

There are even efficient rational approximations6 for

sign(x)

which is not even continuous!

Many of our financial functions have a kink in some limit, e.g., when t = T .

6First shown in 1877 by Егор Иванович Золотарёв (Yegor Ivanovich Zolotarev).
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3 General Caveats Relative vs absolute error

The literature on function approximation typically starts with a focus on
the absolute error of the approximation f̃(x) for the target function f(x)

|f̃(x)− f(x)| . (4.2)

I advise against ever even bothering with the absolute error.

Financial mathematics functions are typically implemented in the format
of floating point numbers. These have a mantissa and an exponent.

Accuracy in floating point representation is by convention and for practical
reasons expressed in the number of significant digits in the mantissa.

This means we need to use the relative accuracy∣∣∣∣∣ f̃(x)

f(x)
− 1

∣∣∣∣∣ (4.3)

for any benchmarking purposes.
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Handling Zero

3 General Caveats Handling Zero

Obviously, this means that we must ensure that any approximation f̃(x)
is zero exactly wherever f(x) is zero.

Easy: instead of f(x), we approximate

g(x) :=
f(x)

(x− x0)µ
(4.4)

by some g̃(x), where µ is the multiplicity of the root x0, and set

f̃(x) := (x− x0)µ · g̃(x) . (4.5)

When multiple roots exist, most likely, the respective interval is subdivided
and each root treated separately by its own localized approximation.
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4 Some formal background Error alternation

The alternation theorem of de la Vallée-Poussin [Val10; Enc17]

Given a continuous function f(x) on x ∈ [a, b], an n-th order polynomial
approximant P̃n(x), and some successive points x0 < x1 < · · · < xn+1 on
[a, b] at which the errors ∆̃i := f(xi)− P̃n(xi) alternate in sign,

∆̃i · ∆̃i+1 < 0 ∀ i = 0, . . . , n , (5.1)

then the maximum absolute error of any n-th order polynomial approximant
Pn(x) is at least as large as the smallest of the |∆̃i|, i.e.,

inf
Pn

{
max
x∈[a,b]

|f(x)− Pn(x)|
}
≥ min

{
|∆̃0|, . . . , |∆̃n+1|

}
. (5.2)

A simple proof for its generalization to rational functions is given in [Lit01].

The Chebyshev (equioscillation) theorem

The equality in (5.2) holds iff P̃n(x) is the polynomial of best approximation.
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4 Some formal background Error alternation Visualizing de la Vallée-Poussin
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f(x) := ex

P̃3(x) := 0.995 + x · (0.995 + x · (0.543 + x · 0.179))

∆̃(x) := f(x)− P̃3(x) [right ordinate]

x1

∆̃1

x2

∆̃2

x3

∆̃3

x4

∆̃4

x5

∆̃5

(arbitrarily chosen x1 to x5 such that ∆̃1 to ∆̃5 alternate)

For all possible P3(x):

max(|f(x)− P3(x)|) ≥ min1≤i≤5{|∆̃i|} !
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4 Some formal background Chebyshev polynomials

Chebyshev polynomials

T0(x) = 1 (5.3)

T1(x) = x (5.4)

T2(x) = 2x2 − 1 (5.5)

T3(x) = 4x3 − 3x (5.6)

Tn(x) = cos(n arccos(x)) (5.7)

Recursion

Tn(x) = 2x · Tn−1(x)− Tn−2(x) (5.8)

Product rule (this will be important later)

Tm(x)Tn(x) = 1
2

[
Tm+n(x) + T|m−n|(x)

]
(5.9)
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4 Some formal background Chebyshev polynomials

Orthogonality

〈Tm, Tn〉C = δnm ·
π

ℵm
(5.10)

where
ℵm ≡ (m = 0 ? 1 : 2) (5.11)

and
〈f, g〉

C
≡

∫ 1

−1

f(x) · g(x)√
1− x2

dx (5.12)

Chebyshev series

If f(x) has finite Chebyshev norm ||f ||C :=
√
〈f, f〉C , then,

f(x) =

∞∑
i=0

ĉiTi(x) (5.13)

on x ∈ [−1, 1] with
ĉi =

ℵi
π
· 〈f, Ti〉C . (5.14)
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4 Some formal background Chebyshev polynomials

Discrete orthogonality

On the roots of TN (x), also called “Chebyshev nodes” , given by

xk = cos
(

(k− 1
2

)·π
N

)
∀ k = 1, 2, ..., N , (5.15)

we have for i, j < N , with ℵi ≡ (i = 0 ? 1 : 2),

N∑
k=1

Ti(xk) · Tj(xk) = δij ·
N

ℵi
. (5.16)
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4 Some formal background Chebyshev polynomials
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4 Some formal background Cheney’s theorem

Cheney’s theorem

Let f(x) be a function integrable on [-1, 1]. If

〈f, Ti〉C = 0 ∀ i = 0, . . . , N , (5.17)

then f(x) either changes its sign in [-1, 1] at least N + 1 times or vanishes
almost everywhere.

This means that any function of the form

∞∑
i=n+1

ciTi(x) (5.18)

features the alternation (5.1) condition in the de la Vallée-Poussin theorem.
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4 Some formal background Truncated Chebyshev series

Alternation of the truncated Chebyshev series

Given the Chebyshev expansion of a function f(x)

f(x) =
∑∞

i=0 ĉiTi(x) , (5.19)

and its n-th order truncated Chebyshev approximant

Pn(x) :=
∑n

i=0 ĉiTi(x) , (5.20)

the resulting error function

∆n(x) := f(x)− Pn(x) (5.21)

satisfies the Cheney condition (5.17). It follows that either ∆n(x) is identic-
ally zero or has n + 1 sign changes. This means that alternation is present
in the sense of de la Vallée-Poussin, i.e.,

“the approximant Pn(x) is close to the best one” [Lit01].
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5 More sophisticated methods

Recall the consequence of Cheney’s theorem:

a truncated Chebyshev series is close to an optimal polynomial.

This led to the idea to convert any

truncated Taylor series

into an

even more truncated Chebyshev series.

This is called the

“Economization of power series”.

Peter Jäckel (VTB Europe SE) Industry-grade function approximation October 2019 23 / 98

5 More sophisticated methods Economization of power series

Develop some power series for f(x) to some order n:

f(x) ≈
∑n

i=0 aix
i . (6.1)

Convert it into the equivalent Chebyshev series∑n
i=0 ciTi(x) =

∑n
i=0 aix

i . (6.2)

Truncate the Chebyshev series at some order m < n.

Re-express as a polynomial, e.g., in Horner form for efficient evaluation:∑m
i=0 ciTi(x) = c0 + x · (c1 + x · (c2 + · · · (cm−1 + x · cm) · · · )) (6.3)

Miraculously, the Chebyshev expansion to order m is more accurate than
the power series to order m.
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5 More sophisticated methods Economization of power series An example
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max(|f(x)−P̃5(x)|)
max(|f(x)−P̃5E(x)|)

≈ 32.75

f(x) := sin(
√

2 π
√
x+ 1 )/

√
x+ 1

P̃5(x) (5th order Taylor expansion)

P̃5E(x) (5th order Chebyshev economization
from 8th order Taylor expansion)

f(x)− P̃5(x) [right ordinate]

f(x)− P̃5E(x) [right ordinate]
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5 More sophisticated methods Economization of power series However, ...

Pretty, huh?

In practice, however, I have yet to find an actual use case of

power series economization.

This is not because the method has no merit.

It is because we can easily do much better!
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5 More sophisticated methods Chebyshev from points

Fitting/approximating/quadratures

By virtue of the discrete orthogonality (5.16), the Chebyshev approximation

f̃N(x) =
N−1∑
i=0

ciTi(x) (6.4)

satisfies f̃N(xk) = f(xk) on the roots of TN (x), i.e., on

xk = cos
(

(k− 1
2

)·π
N

)
∀ k = 1, 2, ..., N , (6.5)

where, with ℵi ≡ (i = 0 ? 1 : 2),

ci =
ℵi
N

N∑
k=1

f(xk) · Ti(xk) (6.6)

=
ℵi
N

N∑
k=1

f(xk) · cos
(
i·(k− 1

2
)·π

N

)
.
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5 More sophisticated methods Chebyshev from points

Note that the N coefficients ci of the N -point Chebyshev fit given by (6.6)

are not the same as the ĉi of the true Chebyshev expansion (5.14).

For practical purposes, however, the difference is negligible, meaning

ci ≈ ĉi . (6.7)

What’s more, the fact that the fit is exact on the N Chebyshev nodes guar-
antees that the error of the fit alternates N−1 times (unless the fit is already
exact in which case the error is zero everywhere).

The discrete Chebyshev fit is easy to compute and works extremely well.

This is why we never really need to use the economization technique.
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5 More sophisticated methods Chebyshev-Padé

Given a (possibly approximate) Chebyshev expansion of a function f(x) on
[-1,1] to whichever order we may require,

f(x) =

∞∑
l=0

clTl(x) (6.8)

in analogy to the construction of a Padé expansion from a Taylor expansion,
we can also form rational function approximation based on the Chebyshev
basis set:

R(m,n)(x) =
Pm(x)

Qn(x)
(6.9)

Pm(x) =
m∑
j=0

pjTj(x) (6.10)

Qn(x) = 1 +
n∑
k=1

qkTk(x) (6.11)
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5 More sophisticated methods Chebyshev-Padé

A true Chebyshev-Padé7 expansion R(m,n)(x) of f(x) must have the same
Chebyshev series coefficients as f(x) to order N = m+ n, i.e.,〈(

f − Pm
Qn

)
, Ti

〉
C

= 0 ∀ i = 0, . . . , N = m+ n . (6.12)

A solution R(m,n)(x) = Pm(x)
Qn(x) to (6.12) is also called a

Nonlinear Chebyshev-Padé approximation8.

It is guaranteed to satisfy the Cheney condition (5.17), and thus to alternate.

Thus, there are reasons to assume that nonlinear Chebyshev-Padé approxim-
ants are close to the best ones in the sense of the absolute error [Lit01].

One small snag is . . .

that the nonlinear Chebyshev-Padé approximant does not always exist...

7Some authors call it “Chebyshev-Padé” and some call it “Padé-Chebyshev”.
8Also known as Clenshaw-Lord approximant on behalf of their algorithm in [CL74].
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5 More sophisticated methods Chebyshev-Padé

In contrast, the linearized version of the orthogonality condition given by

〈(f ·Qn − Pm), Ti〉C = 0 ∀ i = 0, . . . , N = m+ n (6.13)

always admits a solution for Pm and Qn.

What’s more,
nonlinear Padé-Chebyshev approximants (in comparison with the linear ones)
have, as a rule, a somewhat smaller absolute errors [sic], but can have larger
relative errors [Lit01]

and we really want a minimal relative error!

A solution to (6.13) is also called a Linear Chebyshev-Padé approximation9.

Since, in practice, I never seek a true analytical Chebyshev-Padé expansion
anyway, I have always found the linear approximant perfectly adequate to
work with.

9Also known as Maehly approximant for its first publication in [Mae60], and referred
to as cross-multiplied linear Padé–Chebyshev approximation in [Lit01] for obvious reasons.
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5 More sophisticated methods The linear Chebyshev-Padé approximant

The coefficients of Pm and Qm are thus to be computed from

〈G , Ti〉C = 0 (6.14)

with

G :=
m∑
j=0

pjTj −
(

1 +
n∑
k=1

qkTk

)
·
∞∑
l=0

clTl (6.15)

for all i = 0, . . . , N = m+ n. Expanding G, we obtain

G =

m∑
j=0

pjTj −
n∑
k=1

qkTk ·
(
c0 +

∞∑
l=1

clTl

)
−
∞∑
l=0

clTl (6.16)

=

m∑
j=0

pjTj −
n∑
k=1

qkc0Tk −
n∑
k=1

∞∑
l=1

qkclTkTl −
∞∑
l=0

clTl (6.17)

=

m∑
j=0

pjTj −
n∑
k=1

qkc0Tk − 1
2

n,∞∑
k,l=1

qkcl
[
Tk+l + T|k−l|

]
−
∞∑
l=0

clTl

(6.18)
Peter Jäckel (VTB Europe SE) Industry-grade function approximation October 2019 32 / 98



5 More sophisticated methods The linear Chebyshev-Padé approximant

For i ≥ 0 and k > 0, we have the generic equality

∞∑
l=1

cl ·
(
δi (k+l) + δi |k−l|

)
= ck+i + c|k−i| · (1− δik) · 1{i>0} , (6.19)

and with this we obtain from (6.14) and (6.18) the linear system

pi · 1{i≤m}−
n∑
k=1

qk
2
·
(
ck+i + c|k−i| · (1 + δik) · 1{i>0}

)
= ci (6.20)

for i = 0, . . . , N = m+ n.

Note that the occurrence of the coefficient ck+i means10 that we must have
the coefficients cl of f(x) =

∑∞
l=0 clTl(x) up to order m+ 2n.

10Whilst this is known in the literature [Lit01, page 26], it is still sometimes missed.
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5 More sophisticated methods Chebyshev-Padé

We have seen how easy it is to convert a Chebyshev expansion (to order
m+ 2n) into a Chebyshev-Padé approximant.

In practice, we can simply use a discrete Chebyshev fit instead of a precise
analytical Chebyshev expansion.

The real good news is that (virtually) all our analytical understanding for
polynomial approximations (de la Vallée-Poussin, Cheney, the Chebyshev
equioscillation theorem, etc.), subject to certain conditions,

also holds for rational approximations!
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6 Remez I and II and all that Voodoo

Based on the above, in 1934, Евгений Яковлевич Ремез11, published
an algorithm for the computation of the best possible (polynomial) function
approximation [Rem34].

A good reference introduction comes with the Boost C++ library [Boo].

In a nutshell (here for polynomials, but it holds for rational functions):-

Select a finite interval [a, b] on which a function f(x) is to be approxim-
ated. We assume this interval to be [−1, 1] (which can always be achieved
by virtue of an affine transformation).

Find an initial approximant P (0)
N (x) of order N and a sequence of N + 2

Chebyshev reference points

x
(0)
i ∈ [−1, 1], i = 0, . . . , N

such that the error ∆(0)(x) := P
(0)
N (x)− f(x) alternates over the xi.

11Evgeny Yakovlevich Remez
Peter Jäckel (VTB Europe SE) Industry-grade function approximation October 2019 35 / 98

6 Remez I and II and all that Voodoo

Example: target function and initial polynomial P (0)
3 (x).
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6 Remez I and II and all that Voodoo

Error function and reference points:
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6 Remez I and II and all that Voodoo

The minimax polynomial12 has the property that it

alternates with equal amplitude at its extrema in the interval13.

This, directly, is a nonlinear objective of significant complexity.

The Remez algorithm breaks this into an

iteration between two easier tasks.

12another name for the equioscillatory best fit
13Note that the “extrema” locations (usually) include the end points of the interval.
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6 Remez I and II and all that Voodoo The core of the Remez algorithm Step 1

At iteration k:-

1 Given a set of fixed reference points {x(k−1)
i }, find the coefficients of the

polynomial P (k)
N (x) such that the error function ∆(k)(x) := P

(k)
N (x)−f(x)

alternates with equal amplitude at the fixed reference points.

This means, we have to solve the linear system of N + 2 equations

N∑
j=0

p
(k)
j Tj(x

(k−1)
i ) − f(x

(k−1)
i ) = (−1)iE(k) (7.1)

for the N + 1 coefficients {p(k)
j } and the amplitude E(k).
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6 Remez I and II and all that Voodoo The core of the Remez algorithm Step 2

2 Having established the new error function

∆(k)(x) :=

N∑
j=0

p
(k)
j Tj(x) − f(x) , (7.2)

move the reference points:-

in the Remez-I algorithm, just one point is moved14;

in the Remez-II algorithm, all are moved to the extrema of ∆(k)(x);

to become the new set of reference points {x(k)
i }.

14in practice, it seems that Remez-I is no longer in use
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6 Remez I and II and all that Voodoo The core of the Remez algorithm Caveats

Caveats:-

Most of the complexity lies in step 2 of each Remez iteration, and the
following various required checks.

In the more general rational approximation case, the solution found in
step 1 may have poles inside the interval. That’s bad.15

In the more general transformed case, the solution found in step 1 may
have more or fewer error extrema than that of the previous iteration.

The error function may also have zero slope points which are not extrema.

Much else can go wrong. It is a black art.
See the Boost C++ library’s [Boo] “checklist” on the Remez method.

It is not for the fainthearted, but perseverance pays off.

15This is often caused by insufficient precision, else usually can only be helped by
increasing N .
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6 Remez I and II and all that Voodoo An example in three iterations

Back to our example. Iteration 1, step 1, after solving (7.1):
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6 Remez I and II and all that Voodoo An example in three iterations

Iteration 1, step 2, upon moving the reference points:
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6 Remez I and II and all that Voodoo An example in three iterations

Iteration 2, step 1, after solving (7.1):
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6 Remez I and II and all that Voodoo An example in three iterations

Iteration 2, step 2, upon moving the reference points:
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6 Remez I and II and all that Voodoo An example in three iterations

Iteration 3, step 1, after solving (7.1):
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6 Remez I and II and all that Voodoo An example in three iterations

Iteration 3, step 2, upon moving the reference points:
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CONVERGED

Rational Remez

6 Remez I and II and all that Voodoo Rational Remez

For a rational function approximation R(m,n)(x), the equi-alternation equa-
tion (7.1) of the Remez algorithm step 1 becomes∑m

j=0 p
(k)

j Tj(x
(k−1)

i )

1 +
∑n

l=0 q
(k)

l Tl(x
(k−1)

i )
− f(x(k−1)

i ) = (−1)iE(k) (7.3)

which, assuming no poles of the approximant on [-1,1], turns into

m∑
j=0

p(k)

j Tj(x
(k−1)

i ) =
(

1 +
n∑
l=0

q(k)

l Tl(x
(k−1)

i )
)
·
(
f(x(k−1)

i ) + (−1)iE(k)

)
.

(7.4)
Note that this equation is no longer linear in {p(k)

j , q(k)

l , E(k)}.

It is, however, only mildly so (bilinear, to be precise).
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6 Remez I and II and all that Voodoo Rational Remez

Alas, “the method usually adopted to solve these equations is an iterative
one” [Boo], i.e., to iterate over `, each time solving the linear system [Hen63]

m∑
j=0

τij · p(k)(`)

j − ω(`−1)

i ·
n∑
j=0

τij · q(k)(`)

j + (−1)i ·E(k)(`) = fi (7.5)

with

τij := Tj(x
(k−1)

i ) , fi := f(x(k−1)

i ) ω(`−1)

i := fi + (−1)i ·E(k)(`−1)
,

(7.6)
and E(k)(0) initialized to the previous average error.

I would recommend against this.

As discussed by Henderson in 1963 [Hen63], this simple fixed point iteration method may
not even be contractive. It depends on the target function whether it converges towards
your solution or diverges away from it. It may work in practice. However, ...

The bilinear form of the full system (7.4) makes it particularly
suitable for the standard (Newton-)Raphson method.

Instead, simply use (Newton-)Raphson to solve (7.4).
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Nonlinear Remez

7 Nonlinear Remez Taking the weight... ...into the problem

Nonlinear Remez

It is not uncommon for the approximand function to vary significantly in
magnitude on the approximation interval.

As a result, homogenization of the absolute error can result in a significant
loss of precision in the relative error.

To compensate for this, [Rem34] added a weight function q(x):

When q(x) ≡ 1
f(x) , this means we are aiming to minimize the relative error

of the approximant versus the target function.
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7 Nonlinear Remez Taking the weight... ...into the problem

In practice, we often use auxiliary functions16 to carry part of the burden of
the approximation, e.g.,

the exponential function ey,

or
√
y ,

or simply x · y (when we had to remove a root of the target function).

In general, I allow for a transformation from the original target function
f(x) to a reduced problem function g(x) via a suitably chosen, possibly
nonlinear, transformation θ(x, y) such that

f(x) ≡ θ(x, y)|y=g(x) (8.1)

and then seek an approximant R(m,n) for g(x).

The purpose of the transformation is to render the reduced
approximand g(x) as close to linear as possible.

This is where analytics come in, e.g., asymptotic expansions, etc.
16usually somehow built-in, i.e., highly efficiently implemented
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7 Nonlinear Remez

In order to minimize the relative error of the original target function, we
seek the approximant R(m,n)(x) that makes

∆(x) :=
θ(x, y)|y=R(m,n)(x)

θ(x, y)|y=g(x)

− 1 (8.2)

equi-oscillatory in its extrema on [−1, 1].
Most of the time, m = n gives the best approximation.
However, for a specific (relative) target accuracy, on occasions, I have also

used a numerator polynomial of higher degree than the denominator.
This yields the equi-alternation rule of the Remez algorithm step 1 as

θ
(
xi,

Pm(xi)
Qn(xi)

)
− θ

(
xi, g(xi)

)
·
(
1 + (−1)i · E

)
= 0 . (8.3)

We can still use (Newton-)Raphson to solve this!
Note that the nonlinearity of θ(x, y) can cause ∆(x) not to have the

expected number of extrema, or move the outmost extrema inwards from
the boundaries, etc., etc.
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7 Nonlinear Remez Step 1

Nonlinear Remez: Step 1 (of the k-th iteration)

Dropping all mentioning of outer Remez algorithm iteration count (i.e., k),
define the full solution coefficient vector c as

c := (p>, q>, E)> (8.4)

with
p ∈ Rm+1 , q ∈ Rn , and thus c ∈ Rm+n+2 ,

and the i-th element of the objective function γ(c) of the equi-alternation
condition as the left hand side of (8.3), i.e., as

γi(c) := θ(xi,
Pi
Qi

) − θ(xi, gi) ·
(
1 + (−1)i ·E

)
(8.5)

where

Pi :=
m∑
j=0

τij · pj , Qi := 1 +
n∑
j=1

τij · qj , gi := g(xi) , τij := Tj(xi) .
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7 Nonlinear Remez Step 1 The (Newton-)Raphson system

The (Newton-)Raphson solution of the nonlinear system (8.5) is to iterate
over `, solving the linear system

J(c(`)) ·
(
c( +̀1) − c(`)

)
= γ(c(`)) (8.6)

for c( +̀1) in each iteration with the Jacobian elements

Jil(c) ≡
∂γi(c)

cl
(8.7)

given by

Jil =


θy(xi,

Pi
Qi

) · τilQi for l = 0, . . . ,m

−θy(xi, PiQi ) ·
Pi
Qi
· τi(l−m)

Qi
for l = m+ 1, . . . ,m+ n

−θy(xi, gi) · PiQi · (−1)i for l = m+ n+ 1

(8.8)

with θx(ξ, η) ≡ ∂θ(x,y)
∂x

∣∣∣x = ξ
y = η

and θy(ξ, η) ≡ ∂θ(x,y)
∂y

∣∣∣x = ξ
y = η

.

This isn’t too bad!
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7 Nonlinear Remez Step 2 PJ’s recipe

Step 2

Everyone seems to have their own preferred way to move the reference points.

Here’s mine17.

In order to find the extrema, I compute the derivative

∆′(x) ≡ ∂∆(x)

∂x
(8.9)

of (8.2) analytically, retaining only the numerator[
θx(x, PQ) ·Q2 + θy(x,

P
Q) ·

(
P ′ ·Q− P ·Q′

)]
· θ(x, g)

− θ(x, PQ) ·Q2 ·
[
θx(x, g) + θy(x, g) · g′

]
,

(8.10)

17I tend to use (wx)Maxima (with the 64-bit Steel Bank Common Lisp runtime) since it
is free, if somewhat more cumbersome than commercial alternatives, using its bigfloat
data type with a precision of no less than 50 decimal digits.
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7 Nonlinear Remez Step 2 PJ’s recipe

sub-sample [typically 4 times] between the reference nodes {xi},

evaluate ∆′(x) at all [typically 4 · (m+ n) + 5] sampling points,

identify all brackets of roots of ∆′(x),

and invoke a robust18 root finder on ∆′(x) in each identified bracket.

Then, move the reference points to the found roots.

Remember the Caveats mentioned on page 43!

18Having experimented with a range of the root finders built into (wx)Maxima, I have
converged to using a simple secant solver hand-written directly in Maxima itself.
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8 Examples
√

1 + x − 1 for small x

Say, we wish to approximate
√

1 + x − 1

for small x to avoid the otherwise inevitable catastrophic loss of precision
near zero as was required in Genz’s algorithm for the bivariate cumulative
normal function (see my presentation on composite options [Jäc18; Jäc19]).

We choose the applicable interval to be [−1
8 ,

1
8 ]: we set x = x′/8, drop

the primes, and define

f(x) :=
√

1 + x
8 − 1 (9.1)

for x now to be in the standard Chebyshev interval [-1,1].
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8 Examples
√

1 + x − 1 for small x

Based on the Taylor expansion

f(x) =
x

16
− x2

512
+O(x3)

we choose
θ(x, g) := x ·

(
1
16 − x · g

)
(9.2)

which removes the root at zero.

This of course means that, due to f(x) ≡ θ(x, g(x)), we have implicitly
defined

g(x) =
1

x
·
(

1/16−
(√

1 + x/8 − 1
)
/x
)
. (9.3)

We seek a rational approximation g̃(x) of order R(3,4) for g(x).

We set the initial guess g̃(0)(x) to the linear Chebyshev-Padé approximation.
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8 Examples
√

1 + x − 1 for small x

The relative error of g̃(0)(x), i.e., ( g̃
(0)(x)
g(x) − 1):

Relative accuracy  [|max|: 1.033e-14]
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8 Examples
√

1 + x − 1 for small x

The transformed relative error function ∆(0)(x) ≡ θ(x,g̃(0)(x))
f(x) − 1 :

Relative accuracy with transformation  [|max|: 3.337e-16]
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8 Examples
√

1 + x − 1 for small x Initialisation of Nonlinear-Remez

We initialise the reference points to the extrema of ∆(0)(x).
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8 Examples
√

1 + x − 1 for small x Iteration 1 log
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8 Examples
√

1 + x − 1 for small x Iteration 1 result

∆(1)(x):
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8 Examples
√

1 + x − 1 for small x Iteration 2 log
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8 Examples
√

1 + x − 1 for small x Iteration 2 result

∆(2)(x):
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8 Examples
√

1 + x − 1 for small x Iteration 3 log
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8 Examples
√

1 + x − 1 for small x Iteration 3 result
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∆(3)(x)

CONVERGED

g̃(3)(x) = 1.953124999999942E−3+x·(3.671668869161992E−4+x·(1.918897399977124E−5+x·2.409673162592619E−7))
1+x·(0.2504894461010475+x·(0.0205975325688011+x·(6.148741470367674E−4+x·4.822062201867934E−6)))

8 Examples
√

1 + x − 1 for small x Iteration 3 result

Compare this with a (3, 4)-Padé approximation (300 times larger error):

Δ of Nonlinear-Remez solution [|max|: 1.483E-16]   (left ordinate)

Δ of Padé expansion [|max|: 4.960E-14] (right ordinate)
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lnerfcx−1(·)



8 Examples lnerfcx−1(·) A fully worked-out example

Recall

Φ(z) = 1
2erfc(− z√

2
) (9.4)

and the scaled complementary error function

erfcx(z) = ez
2 · erfc(z) . (9.5)

which diminishes like 1/z for z → +∞.

Now define
lnerfcx(z) := ln(erfcx(z)) . (9.6)

We seek an approximation for the

inverse logarithmic scaled complementary error function

lnerfcx−1(·) . (9.7)
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8 Examples lnerfcx−1(·) Analytics

Analytics

We make heavy use of [AS84, p. 26.2.12]:

Φ(z) ≈ −ϕ(z) ·
(

1
z −

1
z3 + . . .

)
for z → −∞ . (26.2.12)

We define
λ := lnerfcx(z) (9.8)

as the input value for our inverse function, and we wish to compute

z(λ) ≡ lnerfcx−1(λ) . (9.9)
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8 Examples lnerfcx−1(·) Analytics

We obtain for:-

z → −∞ (and thus λ→ +∞):

λ ≈ ln(2) + z2 +
1√
4π
· e−z

2

z
(9.10)

z ≈ − 1√
ω
·
(

1 + e−
1
ω
·(1− 3

2
ω lnω)/

√
16π

)
(9.11)

with
ω := 1

λ−ln(2) . (9.12)

For the inverse function in this region, we choose

θ(ω, ζ) := − 1√
ω
·
(

1 + e−ζ/ω/
√

16π
)

(9.13)

and seek a rational function approximation for ζ = ζ(ω).
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8 Examples lnerfcx−1(·) Analytics

For z near zero (and thus λ also near zero):

λ = − 2√
π
· z + (1− 2

π ) · z2 +O(z3) (9.14)

z = −
√
π

2 · λ+
√
π

4 · (
π
2 − 1) · λ2 +O(λ3) (9.15)

Here, we choose
θ(λ, γ) := λ · (−

√
π

2 + λ · γ) (9.16)

and find a rational function approximation for γ = γ(λ).

In the limit z → +∞, and y := eλ → 0 :

y ≈ 1√
π
· 1
z ·
(
1− 1

2 ·
1
z2 + 3

4 ·
1
z4 +O(z−6)

)
(9.17)

1

z
≈
√
π · y ·

(
1 + π

2 · y
2 +O(y6)︸ ︷︷ ︸

yes, really, due to cancellation of O(y4)!

)
(9.18)

We choose
θ(y,R) := 1√

π ·y ·
(
1− y2 ·R

)
(9.19)

and seek a rational function approximation for R = R(µ) with µ := y2 .
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8 Examples lnerfcx−1(·) Nonlinear-Remez on z ∈ [−∞,− 21
16

]

We split the domain z ∈ [−∞,∞] into four intervals:

−3 −2 −1 0 1 2 3

[−∞,−21
16 ] [−21

16 , 0] [0, 2] [2,+∞]

NOTE: for the purpose of the Nonlinear-Remez algorithm, we map all
(respectively transformed) intervals to [−1, 1] via an affine abscissa mapping.

We start with the leftmost region with ω := 1/(λ−ln 2) where

z ∈ [−∞,−1.3125]⇔ λ ∈ [+∞, 2.383574]⇔ ω ∈ [0, 0.591567]

and z = z(λ) = θ(ω, ζ(ω)) given by

θ(ω, ζ) := − 1√
ω
·
(

1 + e−ζ/ω/
√

16π
)

(9.13)

to find an R(7,7) approximant for ζ(ω).

Note: this is the most difficult segment.
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8 Examples lnerfcx−1(·) Nonlinear-Remez on z ∈ [−∞,− 21
16

]

Iteration 8

CONVERGED
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Far left z region



8 Examples lnerfcx−1(·) Nonlinear-Remez on z ∈ [−∞,− 21
16

]

The result is ζ(ω) =
∑7
j=0 pjω

j∑7
j=0 qjω

j
with

j pj qj
0 1.0095166315027250 1
1 5.2198808595043985E1 4.4778820521335590E1
2 6.6489488281084671E2 4.7213770185171718E2
3 5.7172982928421216E3 4.1649570148555720E3
4 2.7640276859915855E4 1.5305272267032917E4
5 3.1445869626862596E4 1.5339137807482323E4
6 −6.2956788351087912E3 3.0196766794574674E3
7 −7.3239092097224373E3 −5.8212790910641370E1

(9.20)

with net accuracy of lnerfcx−1(·) better than 8.6E−17 on z ∈ [−∞,−21
16 ].

Relative accuracy  [|max|: 8.578e-17]
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8 Examples lnerfcx−1(·) Nonlinear-Remez on z ∈ [− 21
16
, 0]

Next, the centre-left region where

z ∈ [−1.3125, 0] ⇔ λ ∈ [2.383574, 0]

(note the inverted bounds for λ) and z = z(λ) = θ(λ, γ(λ)) is given by

θ(λ, γ) := λ · (−
√
π

2 + λ · γ) (9.16)

We optimize an R(6,7) approximant for γ(λ) using our Nonlinear-Remez
algorithm (which is much faster in this region):
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Centre-left z region



8 Examples lnerfcx−1(·) Nonlinear-Remez on z ∈ [− 21
16
, 0]

Iteration 5

CONVERGED
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Centre-left z region

8 Examples lnerfcx−1(·) Nonlinear-Remez on z ∈ [− 21
16
, 0]

The result is γ(λ) =
∑6
j=0 pjλ

j∑7
j=0 qjλ

j
with

j pj qj
0 2.5292753687757275E−1 1
1 2.1452708953922655E−1 1.16832628651416550
2 1.2024361368623330E−1 7.5851282175746919E−1
3 4.1558800861885828E−2 3.2261336129477141E−1
4 9.6174529928918345E−3 9.3691654909889110E−2
5 1.1691581040156436E−3 1.7501961671284489E−2
6 4.9817716885778323E−5 1.7797521724949996E−3
7 6.0924354073989308E−5

(9.21)

with net accuracy of lnerfcx−1(·) better than 8.4E−17 on z ∈ [−21
16 , 0].

Relative accuracy  [|max|: 8.375e-17]
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8 Examples lnerfcx−1(·) Nonlinear-Remez on z ∈ [0, 2]

Iteration 5

CONVERGED
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Centre-right z region

8 Examples lnerfcx−1(·) Nonlinear-Remez on z ∈ [0, 2]

The result is γ(λ) =
∑6
j=0 pjλ

j∑7
j=0 qjλ

j
with

j pj qj
0 2.5292753687758385E−1 1
1 2.5303077883189806E−1 1.3205583833773353
2 1.3802754023765619E−1 8.7756229564117284E−1
3 4.3218642036409986E−2 3.5344645149617066E−1
4 8.5850273448102187E−3 9.1959520651133049E−2
5 9.4705311261385956E−4 1.5240338041796014E−2
6 5.1048163821843303E−5 1.4766888946846876E−3
7 6.4213512630622214E−5

(9.22)

with net accuracy of lnerfcx−1(·) better than 7.1E−18 on z ∈ [0, 2].

Relative accuracy  [|max|: 7.073e-18]
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8 Examples lnerfcx−1(·) Nonlinear-Remez on z ∈ [2,+∞]

Iteration 4

CONVERGED
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Far right z region

8 Examples lnerfcx−1(·) Nonlinear-Remez on z ∈ [2,+∞]

The result is R(µ) =
∑6
j=0 pjµ

j∑6
j=0 qjµ

j
where z(λ) = 1−y2·R(y2)

y·
√
π

with y := eλ and

j pj qj
0 1.5707963267947315 1
1 1.2913020647185905E2 8.3777638976466067E1
2 3.6369729625814331E3 2.4370969028801017E3
3 4.2747204469378166E4 3.0319692409643002E4
4 2.0338989025588868E5 1.6031208819752618E5
5 3.1425713522153701E5 3.0823996502627300E5
6 7.3507808703235503E4 1.3524524137416423E5

(9.23)

with net accuracy of lnerfcx−1(·) better than 2.5E−17 on z ∈ [2,+∞].

Relative accuracy  [|max|: 2.486e-17]
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Φ̃−1(·)



8 Examples Implied normal volatility, i.e., Φ̃−1(·) Analytics

As explained, e.g., in [Jäc17], computing the implied Bachelier (aka normal)
volatility reduces to the computation of the inverse of

Φ̃(x) := Φ(x) +
ϕ(x)

x
. (9.24)

Φ̃(x) is odd around (0, 1
2). Φ̃(x) diverges like 1

x for x→ 0.

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(0, 1
2

) asymptote for x→∞

asymptote for x→ −∞

Due to the symmetry, we

need to invert only one branch.

Φ̃(x)
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8 Examples Implied normal volatility, i.e., Φ̃−1(·) Analytics

For −9/4 < x < 0, we define

g :=
1

Φ̃− 1
2

(9.25)

which is linear in x in lowest order near x→ 0:

g =
√

2π · x ·
[
1− 1

2x
2 +O(x4)

]
(9.26)

Standard use of the Lagrange inversion theorem gives us

x =
g√
2π
· (1 + 1

4πg
2 +O(g4)) (9.27)

and hence we choose to set

x = g · ( 1√
2π

+ g2 · ξ(g2)) (9.28)

and seek a (3,3)-rational function approximation for ξ(g2).
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8 Examples Implied normal volatility, i.e., Φ̃−1(·) Analytics

For x
−∞
≤ x < −9/4, with x

−∞
≈ −38.28 chosen such that

Φ̃(x
−∞

) = −DBL_EPSILON · DBL_MIN ≈ 4.9 · 10−324 , (9.29)

we once again make use of [AS84, p. 26.2.12], define

η :=
√
− ln(−Φ̃) , (9.30)

set
x = χ(η) , (9.31)

and seek a (3,3)-rational approximation for χ(η).

In both sub-intervals,

we improve the respective approximation with one HH3 polishing step.

NOTE: the Householder-3 method is of 4-th order convergence.

Thus, a relative error19 of magnitude ε will be reduced to O(ε4).

19within the convergence radius of the method
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8 Examples Implied normal volatility, i.e., Φ̃−1(·) Analytics

Recall that the Householder-3 method to find a root of f(x), is given by

xn+1 = xn + HH3(xn) (3.8)

where

HH3 = ν(1+h2ν/2)
1+ν(h2+h3ν/6) (3.12)

with ν := −f(x)/f ′(x) and hk := f (k)(x)/f ′(x).

By good fortune, the HH3 increment can be simplified to

HH3(x) = 3qx2·(2−qx·(2+x2))
6+qx·(−12+x·(6q+x·(−6+qx·(3+x2))))

(9.32)

with

q := Φ̃(x)−Φ̃∗

ϕ(x) . (9.33)

where Φ̃∗ represents the value for which we seek x such that Φ̃(x) = Φ̃∗.
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8 Examples Implied normal volatility, i.e., Φ̃−1(·) Analytics

There is one major snag with this approach:

the relative error profile of our initial approximation for x will be

eno rmous l y d isto rtedeno rmous l y d isto rted by the HH3 step!

In other words, once we have optimised ξ(g2) and χ(η) to minimize the
relative error of x as given by (9.28) for the inner and by (9.31) for the outer
branch (x < −9/4), the relative error of the HH3-polished value of x will
display a very different, undesirable, profile.

This is where the Nonlinear-Remez algorithm can show its full power!

We include the HH3 step

in the definition of the nonlinear transformation function θ(·, ·).
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8 Examples Implied normal volatility, i.e., Φ̃−1(·) Analytics

In formulae, for the optimisation of the rational function

χ(η) for x < −9/4 ,

and
ξ(g2) on x ∈ [−9/4, 0] ,

we define the auxiliary (pre-polishing) quantities
x̄(η, χ) := χ when x < −9/4 ,

x̄(g, ξ) := g · ( 1√
2π

+ g2 · ξ) else ,
(9.34)

and then use the nonlinear transformation functions

θ(η, χ) := x̄(η, χ) + HH3(x̄(η, χ)) when x < −9/4 ,

θ(g, ξ) := x̄(g, ξ) + HH3(x̄(g, ξ)) else .
(9.35)

Disclosure:
In practice, the optimisation had to be broken into stages to achieve convergence, namely,
first optimising with HH1, then using that result for an optimisation with HH2, and so on.
In the following, we only show the final stage with HH3.
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8 Examples Implied normal volatility, i.e., Φ̃−1(·) Nonlinear-Remez on x ∈ [−∞,−9/4]

Iteration 12

TERMINATED
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x ∈ [x
−∞
,−9/4]

8 Examples Implied normal volatility, i.e., Φ̃−1(·) Nonlinear-Remez on x ∈ [−∞,−9/4]

We obtain χ(η) =
∑3
j=0 pjη

j∑3
j=0 qjη

j
where

j pj qj
0 9.7738561392 1
1 −9.9078818367 −0.66464958035
2 0.58896177476 −1.5675449008
3 2.225343956 −7.0388793356E−5

(9.36)

with net accuracy of Φ̃−1(·) better than 1.4E−17 on x ∈ [x
−∞
,−9/4].
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Peter Jäckel (VTB Europe SE) Industry-grade function approximation October 2019 90 / 98



8 Examples Implied normal volatility, i.e., Φ̃−1(·) Nonlinear-Remez on x ∈ [−9/4, 0)

Iteration 5

CONVERGED
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x ∈ [−9/4, 0)

8 Examples Implied normal volatility, i.e., Φ̃−1(·) Nonlinear-Remez on x ∈ [−9/4, 0)

Finally, we have ξ(g2) =
∑3
j=0 pjg

2j∑3
j=0 qjg

2j
where

j pj qj
0 0.0321157192137 1
1 −0.0169727106645 −0.663608954938
2 2.62178706002E−3 0.145308053672
3 − 9.61687028942E−5 −0.010475324293

. (9.37)

The accuracy of ξ(g2) is no better than 10−2 and has a peculiar profile!

Relative error of rational approximation for ξ(g2)
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8 Examples Implied normal volatility, i.e., Φ̃−1(·) Nonlinear-Remez on x ∈ [−9/4, 0)

The accuracy of the initial approximation x̄ is also uneven, as predicted.

Relative error of inital approximation x‾ = θ(g,ξ(g2))
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8 Examples Implied normal volatility, i.e., Φ̃−1(·) Nonlinear-Remez on x ∈ [−9/4, 0)

The accuracy of the final HH3-polished solution, however, is almost equi-
oscillatory, as desired, albeit [mostly] unidirectional (for HHk with odd k).

Relative error of HH(3) improved result (i.e., final result)
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8 Examples Implied normal volatility, i.e., Φ̃−1(·) The final formulae

And that’s how the magic was done. Below the final formulae in [Jäc17].
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8 Examples Implied normal volatility, i.e., Φ̃−1(·) The accuracy

Those formulae for Φ̃−1(·) give a net relative accuracy better than 1.3E−17.
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  in standard 64 bit precision [left axis, as a fraction of DBL_EPSILON]

  threshold for input value precision loss
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x

(where |Φ̃(x)| = DBL_MIN)
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