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Abstract

We discuss implementation details of the Discrete Gamma Pool model [Jäc07].

1 Introduction

The valuation of derivatives with the model proposed in [Jäc07] can be seen as a discrete approxima-
tion to a boundary value problem based on a partial integro differential equation, namely

∂tṼ − κ · y · ∂yṼ +
σ2

2
· ∂yyṼ + E

[
Ṽ (t, y, `+ ∆`) + P̃(t, `, `+ ∆`)

∣∣∣∣ `]− Ṽ = 0 (1)

with Ṽ = Ṽ (t, y, `) being the discounted value of the contingent claim at hand, P̃(t, `, ` + ∆`)
standing for cashflows triggered by losses of size ∆` conditional on the current loss level in the
overall portfolio being `, and the expectation E[·] being over the unknown Lévy measure associated
with the dynamics of the loss `. For any individual pricing problem, the contractual details determine
what initial values are to accompany the PIDE (1), what the loss induced payment term P̃ represents,
and what further transition rules are to be applied.

2 The lattice implementation

The model’s valuation is implemented as an explicit finite differencing scheme on a discretisation in
the direction of time, the hazard rate driving process y, and the portfolio losses `. Denote as Vi j k
the value of the contingent claim at the discretisation node associated with time ti, hazard rate level
yj , and loss level `k. Denote the number of hazard rate levels in the lattice as ny and the number
of loss levels as n`. The hazard rate discretisation is done symmetrically (around zero) in terms of
the driving Ornstein-Uhlenbeck process y, and the levels yk are spaced equally in the y direction,
i.e. yj − yj−1 = ∆y for all j > 1 and j ≤ ny. The loss discretisation is always laid out such that
`1 = 0 and `n`

= 1 − R, but no assumption about homogeneity is made. In fact, the loss levels
are deliberately aligned such that we always have a node on each of the attachment and detachment
points of any involved tranches, as well as on all applicable trigger levels. We refer to all loss levels
that we wish to have represented exactly under any circumstances as the set of mandatory loss levels.
For instance, for a product involving a 5% loss trigger level, on a 10%–50%, tranche, for a portfolio
with R = 60% recovery, this set would be {0, 0.05, 0.1, 0.5, 0.6}. In between any pair of adjacent
mandatory loss discretisation levels, loss nodes are spaced homogeneously with the smallest number
of intermediate nodes such that an externally specified maximum loss discretisation distance, e.g.
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0.5%, is not exceed over any loss discretisation step. Since the family of products valued with this
model includes loss triggered leveraged super-senior tranches with time varying trigger levels, the set
of loss levels is also allowed to vary from one coupon period to the next, and a complete rebuilding
of the loss level discretisation is invoked when necessary. The values Vi j k are interpolated linearly
over the nearest two loss levels prior to re-discretisation for any time ti that is a transition between
two periods where the set of mandatory loss levels changes.

In any given backwards induction step, the value at an earlier (interior) node is computed accord-
ing to

Ṽi−1 j k =

n∑̀
k′=k

πk k′
(
Ṽi j k′ + P̃i k k′

)
(2)

+ ∆t ·

(
σ2

2
· Ṽi j+1 k − 2Ṽi j k + Ṽi j−1 k

∆y2
− κ · Ṽi j+1 k − Ṽi j−1 k

2∆y

)
.

The term P̃i k k′ denotes the ti-discounted value of any loss induced cashflows occurring at time ti if
portfolio losses jump from level `k to level `k′ . For nodes on the boundary in the y direction, we use

Ṽi−1 1 k =

n∑̀
k′=k

πk k′
(
Ṽi 1 k′ + P̃i k k′

)
(3)

+ ∆t ·

(
σ2

2
· Ṽi 3 k − 2Ṽi 2 k + Ṽi 1 k

∆y2
− κ · 4Ṽi 2 k − 3Ṽi 1 k − Ṽi 3 k

2∆y

)

Ṽi−1 ny k =

n∑̀
k′=k

πk k′
(
Ṽi ny k′ + P̃i k k′

)
(4)

+ ∆t ·

(
σ2

2
·
Ṽi ny k − 2Ṽi ny−1 k + Ṽi ny−2 k

∆y2
− κ ·

Ṽi ny−2 k + 3Ṽi ny k − 4Ṽi ny−1 k

2∆y

)

which means that the scheme is of second order in the y direction throughout. The transition proba-
bilities πk k′ are determined by the Discrete Gamma loss process, and we discuss their derivation in
more detail further on.

A technical inconvenience of the Discrete Gamma Pool model is that the matrix of transition prob-
abilities πk k′ is dense in its upper right triangle since all loss levels above the current one are attainable
in any time step for any finite value of γ. In fact, it is this feature of the underlying Gamma-Phi model
that was one of the main reasons why it was selected to govern the loss transition probabilities. Alas,
a consequence of the dense transition probability matrix is a considerable computational burden. As
it turns out, the main effort is the calculation of the transition probability coefficients πk k′ , and less
so the subsequent valuation itself, even when taking into account the valuation of several contracts in
parallel with all involved transition rules. Since the calculation of these transition probabilities, and
the backwards induction (2), for any one time step, splits readily in a sequence of ny calculations for
each of the hazard rate levels, the model’s implementation chooses to loop over j outside the loop over
k, and parallelises the calculations for different j over a pool of threads that is, by default, the size of
the number of CPUs on the respective computer. In practice, we found that even on dual-quad-core
machines that have a total of eight effective CPUs with associated floating point unit, we achieve up
to 90% utilisation of all the involved cores in this fashion.
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3 The loss transition probabilities

The discrete backwards induction equation (2) consists of two parts, namely of a finite-differencing
discretisation of the generator of the Ornstein-Uhlenbeck process y, and of a loss-discretised approx-
imation to the expectation

(1−R)∫
`min(λ,`)

(
Ṽ (t, y, `′) + P̃(t, `, `′)

)
ψ(λ, `, `′) d`′ . (5)

The loss transition density ψ(λ, `, `′) is given by

ψ(λ, `, `′) =
g
(
γφ , Γ−1(γ, e−λ∆t)− Γ−1(γ(1− φ), 1−R−`′

1−R−` )
)

(1−R− `) · g
(
γ(1− φ) , Γ−1(γ(1− φ), 1−R−`′

1−R−` )
) (6)

with
`min(λ, `) = `+

(
1− Γ(γ(1− φ),Γ−1(γ, e−λ∆t))

)
· (1−R− `) . (7)

and
g(α, x) = xα−1e−x

/
Γ(α) . (8)

The transition density (6) is the core of the Discrete Gamma Pool model. Depending on the choice
of parameters, it can be numerically difficult to manage, as becomes clear by the variety of shapes
and scales of magnitude it can attain as discussed in [Jäc07]. For the loss-discretised evaluation in
the lattice implementation, we need to choose non-negative discrete loss transition probabilities πk k′
such that

n∑̀
k′=k

πk k′
(
Ṽi j k′ + P̃i k k′

)
≈

(1−R)∫
`min(λ(ti,yj),`k)

(
Ṽ (ti, yj, `

′) + P̃(ti, `k, `
′)
)
ψ(λ(ti, yj), `k, `

′) d`′ (9)

with
λ(ti, yj) = λ̂ · e−

1
2
V0[y(ti−1)]+yj . (10)

The problem of choosing suitable weights πk k′ belongs to the more general family of quadratures.
However, since the levels `k′ are not to be varied on behalf of the quadrature (9), and since they are
definitely not equally spaced, we are not dealing with a standard setting as for Gaussian, or Newton-
Cotes quadratures. Notwithstanding the non-standard nature of the task, the choice of weights πk k′
becomes unique once one selects a set of n̂`k specific functions χk′′(`′) for which one demands the
integral to be exact, i.e.

n∑̀
k′=k

πk k′ · χk′′(`k′) =

(1−R)∫
`min(λ(ti,yj),`k)

χk′′(`
′)ψ(λ(ti, yj), `k, `

′) d`′ (11)

with
n̂`k = n` − b`min(λ(ti, yj), `k)c+ 1 (12)

and k′′ = 1, ..., n̂`k . The addition of 1 on the right hand side of (11) represents the fact that we allow
the sum on the left hand side in (9) to start at k, which means that we allow positive probability for
the transition from `k → `k, i.e. for no loss to incur. This is, strictly speaking, in contrast to the
analytical properties of the transition density. However, this choice improves the overall accuracy of
the numerical approximation. This can be understood intuitively: the bulk of the transition density
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is in the direct vicinity of the current loss level when spreads are at normal investment grade market
levels, or lower, whence, as a discretised approximation, most of the transition probability must be on
the same and the next loss level. When λ is so high that `min(λ, `k) > `k+1, we do, of course set all
πk k′ with `k′+1 < `min(λ, `k) to zero. This does indeed happen on some levels in y since the associated
hazard rate levels λ(y) can be very large when y is three, four, or even five standard deviations up
from its mean, as is usual on a finite differencing lattice.

For quadratures of very smooth functions, the natural choice for the basis functions χk′′(`′) is of-
ten a set of monomials, either globally with increasing order (as for Gaussian quadratures), or, when
the nodes are subdivided into groups, a set of low order local polynomials (as Newton-Cotes rules).
However, in our setting, there are two reasons why we would not want to choose monomials as basis
functions. The first reason is that we want the algorithm to match as closely as possible all functions
that resemble what could be considered as effective payoff functions. For our target products, this typ-
ically entails linear terms interleaved with various min(·, ·) and max(·, ·) expressions, and functions
of this type are notoriously ill represented by monomials due to their points of non-differentiability.
In fact, we choose loss levels to be placed exactly on all such points of interest specifically so that
we can represent the nonlinearity in the payoff accurately, hence it wouldn’t make sense to abandon
this advantage now. The second reason is that the inhomogeneity in the placement of loss levels can
give rise to numerical instabilities in the solution of the resulting linear system for the weights πk k′ .
In analogy to the set of basis functions that are used for standard linear finite element methods, we
therefore choose as follows.

First, denote the left half-hat function as

χ
(−)
k′ (`) =

`− `k′−1

`k′ − `k′−1

· 1{`∈[`k′−1,`k′ )} , (13)

and the right half-hat function as

χ
(+)
k′ (`) =

`k′+1 − `
`k′+1 − `k′

· 1{`∈[`k′ ,`k′+1)} . (14)

Then, define the asymmetric hat functions

χk′(`) = χ
(−)
k′ (`) + χ

(+)
k′ (`) . (15)

The set of functions we demand to be integrated exactly by the discretisation for any given k is now
defined by:-

• The right half-hat function χ(+)
k (`).

• All χk′(`) for k < k′ < n`.

We show an example for this in figure 1. In addition, we demand that

n∑̀
k′=k

πk k′ = 1 (16)

which means that probability remains normalized. It is clear that this choice means

πk k′ =

(1−R)∫
`min(λ(ti,yj),`k)

χk′(`
′)ψ(λ(ti, yj), `k, `

′) d`′ (17)
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Figure 1: The linear finite element basis functions chosen to be matched exactly by the integration over the actual loss
transition density as stated in equation (9) for an arbitrary inhomogeneous discretisation in the loss direction.

for all k′ that satisfy k ≤ k′ < n`, and that the last weight is given by

πk n`
= 1−

n`−1∑
k′=k

πk k′ . (18)

For the first weight πk k, we can substitute the definition of the right half-hat function, and integrate
by parts to obtain

πk k =

`k+1∫
`min(`k)

`k+1−`
`k+1−`k

· ψ(`k, `
′) d`′ (19)

=
[
`k+1−`′
`k+1−`k

·Ψ(`k, `
′)
]`′=`k+1

`′=`min(`k)
+

1

`k+1 − `k

`k+1∫
`k

Ψ(`k, `
′) d`′ (20)

where we have dropped the dependencies on λ for clarity. The first term on the right hand side
of (20) is zero, and thus we have the loss transition transition probability given by an integral over the
cumulative loss transition probability:

πk k =
1

`k+1 − `k

`k+1∫
`k

Ψ(`k, `
′) d`′ (21)

For all k′ > k with k′ < n`, we can derive in complete analogy

πk k′ =
1

`k′+1 − `k′

`k′+1∫
`k′

Ψ(`k, `
′) d`′ − 1

`k′ − `k′−1

`k′∫
`k′−1

Ψ(`k, `
′) d`′ , (22)

as well as finally

πk n`
= 1− 1

`n`
− `n`−1

`n`∫
`n`−1

Ψ(`k, `
′) d`′ . (23)
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This means that we can compute all discrete loss transition probabilities from a sequence of integrals
over the cumulative loss transition probability, and we discuss in the next section how this is done
in a numerically robust fashion. An advantage of the above scheme for the calculation of the dis-
crete loss transition probabilities is that the integration of the cumulative loss transition probability is
numerically more tractable than integration of the density itself.

4 Integrating the cumulative loss transition probability

The cumulative loss transition probability is given by

Ψ(`, `′) = Γ
(
γφ , Γ−1(γ, e−λ∆t)− Γ−1(γ(1− φ), 1−R−`′

1−R−` )
)
. (24)

The involved normalised incomplete Gamma function as defined by

Γ(α, x) =

x+∫
0

g(α, x′) dx′ (25)

and its inverse can be computed comparatively efficiently by the aid of the algorithm published by
DiDonato and Morris [DM87]. In order to integrate over the cumulative loss transition probability
from `k′ to `k′+1, for all interior intervals with k′ > k + 1 such that Ψ(`k, `k′−1) > 0, we use a
four-point rational interpolation of the probability function through the four points

x0 = 0 f0 = 0

x1 = `k′+1 − `k′ f1 = Ψ(`k, `k′+1)−Ψ(`k, `k′)

x2 = `k′+2 − `k′ f2 = Ψ(`k, `k′+2)−Ψ(`k, `k′)

x3 = `k′−1 − `k′ f3 = Ψ(`k, `k′−1)−Ψ(`k, `k′)

(26)

with the functional form

f(x) =
bx+ dx2

c+ x
. (27)

We selected this rational function since we found that polynomial interpolation results in significant
approximation errors due to the fact that the cumulative probability function has domains of extremely
steep and extremely flat slopes. Rational interpolation, whilst typically being slightly more complex
in its implementation, is known to cope much better with functions of this type [PTVF92], and indeed
we achieved excellent results with the method discussed here.

The coefficients b, c, and d in (27) are given by

b =
−f1f3x

2
2(x1 − x3) + f2f3x

2
1(x2 − x3) + f2f1x

2
3(x1 − x2)

f3x1(x1 − x2)x2 + f1x2(x2 − x3)x3 − f2x1(x1 − x3)x3

(28)

c =
x1x2x3(f2(x1 − x3)− f1(x2 − x3)− f3(x1 − x2))

f3x1(x1 − x2)x2 + f1x2(x2 − x3)x3 − f2x1(x1 − x3)x3

(29)

d =
−f2f3x1(x2 − x3) + f1f3x2(x1 − x3)− f1f2x3(x1 − x2)

f3x1(x1 − x2)x2 + f1x2(x2 − x3)x3 − f2x1(x1 − x3)x3

. (30)

Note that the expressions for b, c, and d do not depend on the abscissa values x1, x2, and x3 to be
ordered. Also take notice that the benefit of the coordinate translation such that the integrand goes
through the origin is not only that it simplifies the subsequent analytical expressions, it also turns out

6



to significantly stabilise the numerical implementation with respect to round-off errors1. The integral
over the cumulative probability is then approximated by

`k′+1∫
`k′

Ψ(`k, `
′) d`′ ≈ Ψ(`k, `k′) · (`k′+1 − `k′) +

x1∫
0

f(x) dx . (31)

The integral over f(x) is given by
x1∫

0

f(x) dx =
(
x2

1/2 +D · (ln(1 + e)− e)
)
· d (32)

with

D = c(c− b/d) (33)
e = x1/c . (34)

In case the coefficient d is zero, the simpler formula

x1∫
0

f(x) dx

∣∣∣∣∣∣
d=0

= (x1 − c · ln(1 + e)) · b (35)

is used. Attention is being paid to underflow of ln(1 + e), which is approximated as

ln (1 + e) ≈ e ·
(

1 + e ·
(
e

3
− 1

2

))
(36)

whenever |e| is less than half the machine precision on a logarithmic scale. The right hand side of
(32) is then evaluated as

x1
2 ·
(
b

2c
+

d

3c
· x1 −

b

3c2
· x1

2

)
. (37)

Equally, it is checked whether the function f(x) is monotonic over the interval by evaluation as to
whether the pole at −c is inside the interval of integration, and by assessment as to whether f(x) has
any extrema inside the interval. When any of these conditions fail, the lower order rational function

f̃(x) =
b̃x

c̃+ x
(38)

is used for interpolation through the first three of the points in (26), i.e. x0, x1, and x2, with the
coefficients

b̃ =
f1f2(x2 − x1)

f1x2 − f2x1

(39)

c̃ =
(f2 − f1)x1x2

f1x2 − f2x1

. (40)

The integral then becomes
x1∫

0

f̃(x) dx = (x1 − c̃ · ln(1 + x1/c̃)) · b̃. (41)

1Without the translation of coordinates, we noticed frequently re-occurring round-off errors of prohibitive size for very
low levels of λ. When the interpolation is done through points such that one is at (0, 0), no round-off errors occurred.
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The logarithm may have to be substituted by expansion if x1/c̃ is too small, as above, in which case
the expression evaluated is

b

c
·
(

1

2
− x1

3

)
· x1

2. (42)

If this lower order rational function has its pole at −c inside the interval, which we have yet not seen
occurring in practice, the algorithm falls back to the simple trapezoidal rule

x1∫
0

f(x) dx ≈ x1f1

2
. (43)

It remains to be said how the integration is done for the intervals at either end of the loss discreti-
sation. The last interval from `n`−1to `n`

is done with the three point rational form (38). The most
difficult and most important one since it typically contains most of the probability mass, the integral
from `k to `k+1 is done using the four-point rational interpolation (27) through `min(`k), `k+1, `k+2, and
an additional point `mid(`k) := (`min(`k) + `k+1)/2 (note that this point is not part of the original loss
level discretisation). Integration is from `min(`k) with Ψ(`k, `min(`k))=0 by definition. For consistency,
the interval [`k+1, `k+2) is handled using the same interpolation points as the integral [`k, `k+1), after
dropping the left-most used point, and adding `k+1. When `min(`k) ≥ `k+1, which can happen for high
hazard rate levels, the algorithm finds the greatest m such that `min(`k) ≥ `m and performs the above
interpolation as if k = m with `min(`m) = `min(`k).
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