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Abstract

A parametric local volatility form based on a hyperbolic conic section is introduced, and de-
tails are given as to how this alternative local volatility form can be used as a drop-in replacement
for the popular Constant Elasticity of Variance local volatility model [Cox75, Bec80], and what
parameter restrictions apply.

1 Introduction

The Constant Elasticity of Variance (CEV) model is a well-known way to parametrise the dependence
of absolute instantaneous volatility on movements of an underlying financial observable S:

UCEV, absolute  — UCEV . Sﬂ (1)
As a stochastic process, the CEV model is often described by the differential equation
dS == O'CEVsﬁdW y (2)

with dW standing for the infinitesimal increment of a standard Wiener process. This stochastic differ-
ential equation allows for closed form solutions for the prices of plain vanilla options [Cox75, Sch89]
which is one of the reasons for its popularity. Equivalent Black volatilities can be implied from
vanilla option prices for different strikes, allowing the use of (3 as a parameter to match the market-
observable skew for vanilla options. Values for 3 less than one, for example, give a negative skew as
often observed in equity and interest rate markets.

Alas, the CEV model doesn’t only have advantages. It also brings with it a range of problems:

e Its vanilla option formula depends either on the approximation of an infinite series of Gamma
functions or on the evaluation of the non-central chi-squared distribution function, “which is
notoriously difficult to compute quickly and accurately” [NNOS5].

e Numerical evaluations based on finite difference methods as well as Monte Carlo simulations
incur difficulty near S = 0. The problems near zero arise because no simple transformation
can be invoked to enable valuation on a homogeneous scale because, near zero, It6’s lemma
does not hold for any function f(S) if S is governed by (2) for 3 < 1. The problems are
so serious that, for practical applications, some authors have suggested to suppress the CEV
scaling behaviour altogether near zero, and to assume a piecewise linear (and thus manageable)
form in a small neighbourhood of zero instead [AA0O].
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e The [ parameter values required to match market-observable implied volatility skews are often
near zero, and always less than 1. As a consequence, implied volatilities for high strikes,
become very small. In fact, with increasing strike, implied volatility even converges to zero!

e For market-calibrated values of 3, the process (2) can attain zero. This not only adds to the
numerical inconveniences, but also means that any financial product whose value becomes un-
defined when zero is attained cannot be priced with a CEV model.

A common approximation for the CEV model to overcome the difficulty with analytical formulae
and numerical schemes near zero is to replace (2) with the displaced diffusion model [Rub83]

This has the advantage that plain vanilla options can be valued with a call to the Black function with
modified inputs, and thus become reliable to evaluate. Stable numerical schemes can also be designed
based on the transformation )

S — §=085+(1-H)S. )

since S is lognormal under (3). Also, implied volatility for high strikes for the displaced diffusion
model converges to o3 and not to zero. However, the displaced diffusion model for 3 < 0 still
allows zero to be attained, even negative values for .S are possible!

Inspired by the affine functional form for absolute volatility of the displaced diffusion model (3),
we seek an alternative replacement for the CEV model that retains the advantage that implied volatility
for high strikes does not converge to zero, and is numerically smooth to handle. In addition, however,
we also wish to avoid zero being an attainable boundary, as well as analytical behaviour near zero.
We are prepared to give up exact analytical tractability of plain vanilla option prices, though, as long
as we can find sufficiently accurate approximations that are easy to evaluate.

In the following, we always assume that any parametric local volatility model given by a stochastic
differential equation of the form

dS = og- f(S)-dW )

is transformed both in variables and parameters according to
o = a5f(5)/ So (0)
x = 85/8S (7)
T =1 ®)
() = fz-S0)/ f(S0) ©)

such that

de = o-((x)-dW (10)

with ((z9) = ((1) = 1. In short, we seek a function ((z) that can be used as a drop-in replacement
for z°.

2 Hyperbolic local volatility

A hyperbola can be described by the implicit equation
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Figure 1: A standard hyperbola with a = 1/4 and b = 7/24.

For any given a and b, all points (z, y) that satisfy (11) form the hyperbola of semi-major axis length
a and semi-minor axis length b. Note that b can be larger than «a (in fact, for our applications, we want
it to be as we shall see later). A standard hyperbola is shown in figure 1. Since the ratio of y to z, for
large x, converges to b/a, a standard hyperbola has an opening angle greater than 90 degrees when
b > a, which is a condition we from now on impose. Rotating the same hyperbola by 45 degrees in a
clockwise direction, results in the curve shown in figure 2. Adding an offset to the coordinate system

Figure 2: A hyperbola with a = 1/4 and b = 7/24, rotated clockwise by 7 /4, i.e. 45 degrees.

means we now look at the coordinates given by

<§>:%(—H)(§>+<§§) (12)

with (x,y) still satisfying (11). For b > q, it is possible to find (g, y) such that the lower branch of
the rotated and shifted hyperbola always goes through both (Z,7) = (0,0) and (Z,7) = (1,1). This
solution is given by:

1 1
1 1la 5
Yo :§+§EVI+% (14)
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In our graphical example, this results in the hyperbolic form shown in figure 3. The full functional
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Figure 3: A hyperbola with a = 1/4 and b = 7/24, rotated clockwise by 7 /4, i.e. 45 degrees, and shifted such that it goes
through the points (0, 0) and (1, 1).

form for this hyperbolic conic section is § = h(Z; a, b) with

a? — (a® + b*)x — abyv/1 + 2b% + a\/a2 +02(20% + (1 — 22)2) — 2ab(1 — 22)V/1 + 202
h(z;a,b) = 5 :
a? — b?
15)
By construction, the function h(z; a, b) satisfies h(1;a,b) = 1 forall @ > 0 and b > a. Also, by virtue

of being a segment of a hyperbolic form, it always has finite slope as x — 0 which suffices for S not
being able to attain zero if we use h(z;a,b) as a normalised local volatility function ((x). In fact, it

is straightforward to prove the reciprocal relationship

: , -1
Oh(x;a,b) _ <8h(x, a,b) ) (16)
Ox =0 O =1

and since the slope of h(z;a,b) at z = 1 is finite, its reciprocal value, which is the value of the slope

at x = 0, must also be finite.

The hyperbolic form (15) has two free parameters, namely a, and b, with the restrictions b > a
and a > 0. We can use these to match the CEV local volatility function z° in some sense. The first
criterion for a functional similarity, apart from going through (0, 0) and (1, 1), and having unlimited
growth for x — oo, that springs to mind, is local similarity near 1. For this purpose, for any given

value for (3, we wish to find @ and b such that

Oh(z;a,b)
Ox

dzf

T 17

=1 r=1

which equates to

bv1+2b2 —a _ 3 (18)
b1+ 202 +a '

An intuitive choice for a second condition to pin down both a and b is

0?h(x;a,b) d2aP
TRE%7) — (19)
Ox? 1 da? | _;




which translates into
—8ab*

(bv1+2b2+a)
Equations (19) and (20) have the solution

This gives us the simpler form for (15) which is now matched to the CEV form z” in both slope and
curvature at x = 1:

- = B(B-1). (20)

1B+ p-1
5 "T g

The three functional forms (2), (3), and (22) are shown in figures 4 and 5. Since the limiting behaviour

h(z) = <\/:c2 R0 =) — ﬁ) . 22)
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Figure 4: Absolute volatility for constant elasticity of variance (red, solid), displaced diffusion (green, long dashes), and
hyperbolic (blue, short dashes) local volatility forms for 3 = 1/4 (left) and 5 = 3/» (right).

of implied Black volatilities as a function of strike for time-homogeneous local volatility models is
given by the limiting behaviour of relative local volatility [BBF02], we have immediately

D Gyp(K) = 8= 1+3/15+ 5+ (1-v/1+8) /8 23)
}{Hrlo &hyperbolic(K ) = 1/ ﬁ . (24)

The functional forms (23) and (24) are shown in figure 6.

3 Analytical approximations

It can be shown generically by the aid of asymptotic expansion techniques [Wat87, Kah07] that the
equivalent Black implied volatility ¢ for options struck at 1 + ¢ for an underlying whose dynamics
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Figure 5: Absolute volatility on a logarithmic scale for constant elasticity of variance (red, solid), displaced diffusion
(green, long dashes), and hyperbolic (blue, short dashes) local volatility forms for 5 = 1/4 (left) and 5 = 3/5 (right).
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Figure 6: Black’s implied volatility as given by the hyperbolic local volatlity model in the limit of infinitely high strike

and zero strike as a function of 3 assuming that o = 1 in equation (10) and ((z) = h(z) as defined in (22). The curves
shown are the functional forms (23) and (24).

are governed by the parametric local volatility model (10) is given by
6 = o+308(G—1)
+30 [T - G +26] +€[-20 3+ ) + 42+ G)] |
50 | PTE(G = 1)(3 — ¢ +2G) + 264
P64 G (44 G+ G —26) — 26+ G
520 [30°T [7+ 3G+ 4(5+ 3G)Go — 22(5 + 62) + 16065 + 8] 25)
+202T€2 [209 + 30¢3 + 11¢} + ¢2(20 — 44(y)
+4¢5(35 + 11¢) — 6¢1(45 + 106 — 12¢3) — 60¢; + 36¢4]
— 86 [15¢F + 19¢ + (F(20 — 46¢2) + 8G2(—5 + 22)
+¢1(—30C2 + 18(5 + (3)) + 3(5¢3 — 2(24 + (4))]
+O0(0"T?) + O(0°T?¢) + O(a°TE P+ O(0€”)



wherein
G=01) =1 G="01) G="(1). (26)

For the CEV model, with ((z) = 27, this gives the at-the-money expressions

bomvloy = 14 o’T 1-8)7%+ o1 (1—B)* (7 — 548+ 273%) + O(c°T*)|  (27)
CEVIE=0 — 24 1920
dbea| 1 o’T 2
= -, 1+ T -0 0T 8)

For the displaced diffusion model with {(z) = Sz + 1 — /3, we obtain

2T 4T2
6DD|5:0 = {1 + E78 ( _ 52) 520 ( —106% + 354) + O(UGTS)] (29)
dépp 1 a’T 9 AT
For the hyperbolic volatility model, we have
G = p G = pBB-1) a1
G = —38(8-1) G = =38(8-1)(8*—4),
and thus
&hyperbolic = o+

o 20 (L5~ 1) — (T~ 5109 - 35(19 + 7)) + O(0°T?)
re 15T (3 A=)+ 0(o'T?)|
+€2- (18- 4) — 55 (200 - B(813 — B(279 + 978))) + O(*T?)
+&- [5(6 = B3+ ) + O(c°T)]
+ & (555 (=144 + B(103 4 B(66 — 70))) + O(0*T)]
+0()) .

(32)
Denoting log-moneyness as » = In(1 + &), i.e. £ = e — 1, and expanding (32) in 3¢ around 0, we
obtain within the same approximation order:

A ~
Uhyperbolic ~ O +

oo 2L <af_2T(5 —1) — %I (7 — B(109 — 38(19 + 7))
o (14 5@ -5 9)]
152 %(g —1)- ot (119 B(573 — £(249 + 976)))} (33)
4 _%(_5(1 +8)) — &L (179 — B(733 — 3(269 + 97ﬁ)))]
4 :%(1+ﬁ(3+ﬁ(21—7ﬁ)))

—-2L (1373 — (5451 — 5(1923 + 6795)))}) ,




Expansion (33) is a fourth order polynomial in log-moneyness. For strikes near the money, we expect
it to be highly accurate. However, as strikes deviate from the money significantly, we expect it to
perform increasingly badly since a fourth order polynomial for implied volatility is guaranteed to
lead to arbitrage, i.e. negative risk-neutral densities far away from the money. In the following, we
try to recast (33) such that near the money, we retain the accuracy as above, but as we move away
from the money, we have a more reasonable behaviour than a fourth order polynomial. Our first step
towards such an adjustment is to consider the behaviour of local volatility for small times to expiry.

It is possible to show generically by the aid of asymptotic expansions [BBF02] that for small times
to expiry, local volatility models of the form (10) give rise to the following behaviour for implied
volatility:

A %
:lrli% 0 =0 77— m = (34)
f W) ‘fo Gk ‘

In other words, implied volatility, in the limit of 7" — 0, converges to the harmonic average of absolute
local volatility on a logarithmic scale. For the hyperbolic local volatility model with {(x) = h(x)
given in (22), the integral in (34) can be computed in closed form involving only elementary functions,
though, we omit the rather lengthy resulting formula for the sake of brevity. More interesting than the
exact expression is that it allows us to compute the asymptotics

%Emm %1% Onyperbolic  — % (3 5)
and
,{EIPOO 7111% ((a-hypErbolic - 1/ ﬁ) . %) =
1 VTP
— . 2(1 —1))1 —1DIn4 +2(8 -1 1 2] 36
233 (I+B8(B-1)mB+(B-1)Ind+2(8-1)y/1+p n( \/?ﬂ%rl) 36)

This means that for »» — —oo, implied volatility for very short times to maturity behaves approxi-
mately like

a-hyperbolic ~ O0- (1//6 + C/%> (37)

with ¢ given by the right hand side of (36). In order to retain a similar asymptotic behaviour for all 7',
quartic polynomial behaviour near sc ~ 0, and the limits (23) and (24), we assume for the functional
form of implied volatility

Zj—o Or N Pk
R A L N COE Nz 38
TP T8 TN (1t -0 (B VIFR)) 69

O-hyperbolic =

The coefficients cy, c1, co, c3, and ¢4 can be directly taken from (33):

. B-=1 [oT oT?
o =1+~ (?(5 —1)— 960 (7— B(109 — 33(19 + 76)))) (39)
. 2
oo =L (14 G- o) 0)
_s-1 1 T 119 — B(573 — 3(249 + 97 41
o =Pt (51 S 119 - (673 - 5(219-+ 976)) ) @)
1— o’T
e =~ <5(ﬁ +1) + m(wg 3(733 — 3(269 + 975)))) (42)
€ =g 4;62) (48(1+ B(3+7B(3 — B))) — 0*T(1373 — B(5451 — $(1923 + 6795))))  (43)



In order to determine the unknown coefficient \, we demand that & behaves like (37) for low strikes',
i.e. for x — —oo. This yields

B =B+ BB+ 7603 - 8)))

360 |2(1+B(8—1) B+ (8—1)In4+2(5—1)y/1+ FIn <5—V_iéjf>]

A =

(44)

4 Numerical comparison

We show in figures 7 to 16 a comparison between numerical results obtained with a finite difference
solver and the analytical approximation (38) for a variety of parameter combinations.
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Figure 7: Numerical and analytically obtained implied volatility values for the hyperbolic volatility model for 7' = 1/12,
o =1/4, 3 = 1/2 on linear (left) and logarithmic (right) strike scale. Error values are scaled along the right axes.

The reason we choose the left hand side asymptotic behaviour is given by the financial observation that low strikes
are typically of significantly greater interest in the market than very high strikes.
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Figure 8: Numerical and analytically obtained implied volatility values for the hyperbolic volatility model for T' = 1/12,
o =1/4, 8 = 1/4 on linear (left) and logarithmic (right) strike scale. Error values are scaled along the right axes.

45% 2.00% B0 6.00%
Numerically Numerically
= =Analytically = =Analytically
- = Absolute difference: numerical-analytical = = = Absolute difference: numerical-analytical
= = Vega weighted absolute - alytical)*weight 1.80% = = \ega weighted absolute difference: (numerical-analytical)*weight
40% ¥
. 5.00%
N 50% y
1.60% N
35% ,
:
1.40% .1 4.00%
30% 40% "
1.20%
.
.
o 1 3.00%
25% 1.00% .
30% J
20% 0.80% 1
2.00%
0.60%
15% 20%
. 0.40% 1.00%
- -
10% ‘ S
. -
’ 0.20% S
Lt : Toeal 0%
. — e St 0.00%
.
5% - .
Pl S e e e B e e n e e e - e e — — = 0.00%
0% -0.20% -1.00%
0.2 0.6 1 14 18 22 26 3 34 3.8 42 46 5 0.1 1 10

Figure 9: Numerical and analytically obtained implied volatility values for the hyperbolic volatility model for T' = 1/12,
o =1/4, 3 = 1/16 on linear (left) and logarithmic (right) strike scale. Error values are scaled along the right axes.
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Figure 10: Numerical and analytically obtained implied volatility values for the hyperbolic volatility model for T = 1/4,
o =1/4, 8 = 1/4 on linear (left) and logarithmic (right) strike scale. Error values are scaled along the right axes.
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Figure 11: Numerical and analytically obtained implied volatility values for the hyperbolic volatility model for 7' = 1/2,
o =1/4, 3 = 1/4 on linear (left) and logarithmic (right) strike scale. Error values are scaled along the right axes.
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Figure 12: Numerical and analytically obtained implied volatility values for the hyperbolic volatility model for T' = 1,
o =1/4, 8 = 1/4 on linear (left) and logarithmic (right) strike scale. Error values are scaled along the right axes.
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Figure 13: Numerical and analytically obtained implied volatility values for the hyperbolic volatility model for T' = 2,
o =1/4, 3 = 1/4 on linear (left) and logarithmic (right) strike scale. Error values are scaled along the right axes.
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Figure 14: Numerical and analytically obtained implied volatility values for the hyperbolic volatility model for T' = 5,
o =1/4, 8 = 1/4 on linear (left) and logarithmic (right) strike scale. Error values are scaled along the right axes.
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Figure 15: Numerical and analytically obtained implied volatility values for the hyperbolic volatility model for 7' = 10,
o =1/4, 3 = 1/4 on linear (left) and logarithmic (right) strike scale. Error values are scaled along the right axes.
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Figure 16: Numerical and analytically obtained implied volatility values for the hyperbolic volatility model for T = 20,
o =1/4, 8 = 1/4 on linear (left) and logarithmic (right) strike scale. Error values are scaled along the right axes.
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Figure 17: Numerical and analytically obtained implied volatility values for the hyperbolic volatility model for T' = 30,
o =1/5,3 = 1/2 on linear (left) and logarithmic (right) strike scale. Error values are scaled along the right axes.
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