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Abstract

We discuss simple methodologies for the selection of
most relevant or effective strikes for the assessment
of appropriate implied volatilities used for the valu-
ation of composite, basket, Asian, and spread options
following the spirit of geodesic strikes [ABOBF02].

Introduction

In the context of vanilla, or near-vanilla, derivatives
trading, we often also encounter composite, basket,
Asian, and spread options. Whilst their respective
payoff rules do in principle warrant treating them
as genuinely exotic options, it is often desirable to
use a simple approximation for the sake of tract-
ability. A popular approach is to use a relatively
simple valuation methodology based on multivariate
geometric Brownian motion, the well-known Black-
Scholes-Merton framework, and to find a suitable im-
plied volatility (or term structure thereof) for each
underlying selected by the concept of a most relev-
ant, or effective, strike for each observation date. For
a plain vanilla option, clearly, the volatility must be
taken from the implied volatility surface at the op-
tion’s expiry date and at the option’s strike. For com-
posite, basket, Asian, and spread options, the most
suitable strike for the looking up of implied volatility
is not necessarily as obvious. In this document, we
suggest a systematic procedure that addresses this
question.

Composite, Basket, Asian, and
spread options

A composite option is a contract of European style
which pays at a future payment date Tpay the payoff

(θ · [X (T ) · Y (T )−K])+ , (2.1)

with θ = ±1 for calls and puts, based on two underly-
ings X and Y observed on the expiry date T ≤ Tpay.
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In practice, it is not uncommon for X to be the mar-
ket price of a standard investment asset such as an
equity share, denominated in its domestic currency
DOM, and for Y to be an FX rate that converts the
final investment asset value to a target currency TAR.
As a consequence of the natural direction of the FX
rate, i.e., DOMTAR, meaning the value of one DOM
currency unit expressed in units of TAR, the valu-
ation of a composite option may also incur a quanto
effect since the asset X and the FX rate DOMTAR
cannot be martingales in the same measure, and this
has to be taken into account. For the purpose of this
article, however, we shall assume that all involved
underlyings are martingales in the same measure. In
practice, this may mean that we have to determine
an effective quanto forward for the asset X in the tar-
get currency TAR by other means of approximation
prior to being able to commence with our effective
geodesic strike procedure. We shall return to this
point at the end of section 3.

Basket options are, conventionally, derivatives
with a payoff of the form

(θ · [
∑

iwiXi (T )−K])+ . (2.2)

This is a vanilla option on a linearly weighted average
of a number of underlyings, whence it is also referred
to as an arithmetic basket option. In contrast, whilst
rarely traded, there is also the geometric basket op-
tion

(θ · [
∏
iX

wi
i (T )−K])+ . (2.3)

Asian options are in the framework of multivariate
geometric Brownian motion merely a special case of
arithmetic basket options in that the fixings that con-
tribute to the average are from the same underlying,
but for different observation times:

(θ · [
∑

iwiX (Ti)−K])+ . (2.4)

Spread options usually simply pay according to

(θ · [(X(T )− Y (T ))−K])+ (2.5)

for two underlyings X and Y .
By allowing the subscript i on an observation index

Xi to indicate a specific underlying as well as fixing
time, and by additionally permitting weights to be
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negative as well as positive, it is clear that all of bas-
ket, Asian, and spread options take on the form of
an arithmetic average option

(θ · [
∑

iwiXi −K])+ . (2.6)

Equally, it is evident that both composite and geo-
metric basket options appear as a geometric average
option

(θ · [
∏
iX

wi
i −K])+ . (2.7)

Subsequently, we will therefore concentrate on these
two generic cases: geometric and arithmetic average
options.

Geodesic strikes

The formal derivation of the procedure for the calcu-
lation geodesic strikes in [ABOBF02] involves con-
cepts of projection onto an effective local volat-
ility representation of a basket process for large
deviations, as well as Varadhan’s geodesic the-
orem [Var67], and is rather technical. In this doc-
ument, we shall attempt to obtain a similar result
with a somewhat less rigorous, though tractable, ar-
gument, bearing in mind that the sole purpose of
the exercise is to arrive at a set of suitably chosen
effective strikes for the lookup of implied volatilit-
ies from the underlyings’ implied volatility smiles.
These volatilities are then to be used in whatever
near-vanilla approximation that is chosen for the re-
spective target product. We emphasize that it is clear
that this process cannot possibly arrive at a sophist-
icated exotic product pricing framework. Instead, it
merely is intended to give a procedure that suffices
for the simplistic, but very fast, valuation of some
near-vanilla products whilst preserving some sensible
consistency conditions.

The starting point is that all of the involved
stochastic financial observables X are governed by
a joint log-normal law, and that there is a critical
level K for a function f(·) of the financial observ-
ables, identified by the fact that the payout is of the
form

(θ · (f(X)−K))+ . (3.1)

As is well known, without loss of generality, we can
transform the vector of financial variables X to a
vector of independent standard Gaussian variables z
according to

Xi = X̂i · e−
1
2
cii+

∑
j aijzj (3.2)

with
X̂ = 〈X〉 , (3.3)

the matrix A being the dispersion or factor loading
matrix, and the log-covariance matrix C whose ele-
ments are

cij = 〈lnXi, lnXj〉 (3.4)

relating to the dispersion matrix A according to

C = A ·A> . (3.5)

The approximation of effective geodesic strikes is now
to find a set of logarithmic shift coefficients ξ∗, which
relates to the effective strike for underlying #i as

K∗i = X̂i · eξ
∗
i , (3.6)

such that the multivariate probability density of ξ
under the joint normal law with〈

ξ · ξ>
〉

= C (3.7)

is maximal at ξ = ξ∗ subject to the constraint

f(K∗) = K . (3.8)

In other words, we seek

ξ∗ = arg max
ξ

[
ψ(ξ)

∣∣∣f(K∗) = K

]
(3.9)

with

ψ(ξ) :=
e−

1
2
ξ>C−1ξ√

(2π)n · |C|
(3.10)

and K∗ being given elementwise in equation (3.6).
The log-bilinear form of (3.10) allows us to sim-
plify (3.9) to

z∗ = arg min
z

[
z>· z

∣∣∣ f(K∗) = K

]
(3.11)

with

ξ∗ = A · z∗ . (3.12)

As we shall see below, it turns out that the effect-
ive strikes themselves depend on (implied) volatilit-
ies. This makes the task of effective geodesic strike
calculation ultimately an implicit problem, since we
need the effective strikes to be able to look up the
implied volatilities in the first place. In practice, we
resolve this by the approximation that all volatilit-
ies that show up in the effective strike formulæ are
to be taken as at-the-forward implied volatilities. In
this context, we recall that we mentioned at the end
of the first paragraph in section 2 that, when some
of the underlyings require translation into the target
valuation measure, an approximation for this trans-
lation of forward and implied volatility smile has to
be employed separately and prior to the invocation of
the effective geodesic strike procedure. When choos-
ing the quanto-translation procedure, it is useful to
bear in mind that the subsequent geodesic strike se-
lection is only an approximation for the sake of ana-
lytic tractability for a range of near-vanilla products,
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and thus judge the required level of sophistication
for the quanto translation in line with the overall
level of the chain of approximations. We emphasize,
however, that whilst the geodesic strike procedure is
only an approximation, its purpose is to be consistent
and accurate in a certain asymptotic sense, namely
that of the local volatility projection for large de-
viations, i.e, for out-of-the-money options, and that
of the geodesic distance asymptotics of [ABOBF02]
and [Var67].

Geodesic strikes for geometric average op-
tions

We consider the payoff f(·) being given by

f
geometric
average

(X) =
∏
i

Xwi
i . (3.13)

The constraint (3.8) becomes

K = Ĝ · ew>·A·z∗ (3.14)

with

Ĝ :=
∏
i

X̂wi
i (3.15)

which we write as

w> ·A · z∗ − κ = 0 (3.16)

with

κ := ln(K/Ĝ) . (3.17)

In order to minimize the L2-norm of z∗ subject to the
constraint (3.16), we solve the Lagrange multiplier
problem

z∗ = arg min
z

[
1
2 · z

> · z − λ ·
(
w> ·A · z − κ

)]
.

(3.18)

From

∇z
(

1
2 · z

> · z − λ ·
(
w> ·A · z − κ

))∣∣∣∣
z=z∗

= 0

(3.19)

we have

z∗ = λ ·A> ·w (3.20)

which we substitute into (3.16) yielding

λ =
κ

w> · C ·w
. (3.21)

Upon resubstitution into (3.20), we arrive at

z∗ =
κ ·A> ·w
w> · C ·w

. (3.22)

As for the effective geodesic strikes, equation (3.6)
gives us

K∗i = X̂i · eξi (3.23)

with

ξi :=
κ ·
∑

j cijwj

w> · C ·w
(3.24)

for geometric average options. For composite options
as defined in (2.1), we have wi ≡ 1 and

K∗
X

= X̂ · e

(
ln
(
K
X̂Ŷ

)
· σX ·(σX+ρXY σY )

σ2
X

+2σXρXY σY +σ2
Y

)

K∗
Y

= Ŷ · e

(
ln
(
K
X̂Ŷ

)
· σY ·(σY +ρXY σX )

σ2
X

+2σXρXY σY +σ2
Y

)
.

(3.25)

It is worth reflecting on equation (3.25) with respect
to a few benchmark cases. First, let us consider the
case when σY → 0. In that case, we have

lim
σY→0

K∗
X

=
K

Ŷ
(3.26)

which is consistent with the exact plain vanilla op-
tion we arrive at in this limit for a composite option,
and we obtain of course the symmetric equivalent for
σX → 0. When correlation is zero, the log-moneyness
of the composite option translates to log-moneyness
of the underlyings as a function of the log-volatility-
ratio

ν := 2 ln(σX/σY ) (3.27)

according to the logistic functions

ξ∗
X

=
κ

1 + e−ν
and ξ∗

Y
=

κ

1 + eν
(3.28)

as shown in figure 1. The graph illustrates the sym-

0
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Figure 1: Underlying log-moneyness for composite options with
zero correlation according to equation (3.28).

metry ξ∗
X

(ν) + ξ∗
Y
(ν) = 1 which is intuitively ap-

pealing. Also, when volatilities are equal, the log-
moneyness κ is equally distributed over both under-
lyings, which is again what one would intuitively ex-
pect from a sensible effective strike approximation
formula. In the limit of ρXY = 1, we obtain

ξ∗
X

=
κ

1 + e−
ν
2

and ξ∗
Y

=
κ

1 + e
ν
2

(3.29)
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Figure 2: Underlying log-moneyness for composite options with
perfect correlation according to equation (3.29).

which we display in figure 2. We see in figure 2 that
with diverging volatilities, i.e., as ν diverges from 0,
the underlyings’ log-moneyness is less rapidly shifted
from an equal split at ν = 0 to just one of the un-
derlyings, as indicated by the lesser slope near zero,
when comparing with the case ρXY = 0 in figure 1.
This behaviour is also intuitively desirable.

Finally, we consider the case of perfect correlation
given by the option under consideration actually be-
ing a square option(

θ ·
(
X2 −K

))
+
. (3.30)

In comparison, by a standard argument of continuous
replication, we can value this option based on the
Taylor expansion with complete remainder for any
smooth function h(x) around k

h(x) = h(k) + h′(k)(x− k) +

∫ x

k
h′′(z)(x− z) dz

(3.31)
whence

h(x) · 1{x>k} = h(k) · 1{x>k}+ h′(k)(x− k)+

+

∫ ∞
k
h′′(z)(x− z)+dz . (3.32)

Choosing h(X) = X2−K and k :=
√
K , and taking

the expectation over X, we obtain for the call option

E
[(
X2 −K

)
+

]
(3.33)

= 2kB(X̂, k, σ̂(k)) + 2

∫ ∞
k
B(X̂, k′, σ̂(k′)) dk′

wherein σ̂(k′) is the implied volatility of the asset for
strike k′, and B(X̂,K, σ) is the Black vanilla call op-
tion function for forward X̂, strike K, and implied
volatility σ. Equation (3.33) has two parts. First,
there is a vanilla call option struck at k =

√
K with

absolute weight 2k. Second, we have a continuum of
vanilla call options for all strikes above k with dens-
ity 2. For significantly out-of-the-money options, as
stipulated by the large deviations asymptotics at the
heart of the geodesic argument, the dominant part
will be the discretely weighted call option struck at

k =
√
K , and the contribution of the continuous

part will be largely centered near k and tail off rap-
idly as k′ →∞ due to the rapid decay of out-of-the-
money options value B(X̂, k′, σ̂(k′)), assuming that
σ̂(k′) rises only moderately such as would be consist-
ent with finite second and higher moments. Hence,
while the selection of an effective implied volatility
at k =

√
K for the underlying does not exactly re-

produce the smile dependence one can obtain from
the continuous integration over all strikes to infin-
ity (3.33), we at least capture the fact that the dom-
inant contribution does indeed come from the implied
volatility near k =

√
K , as intended.

Geodesic strikes for arithmetic average op-
tions

Here, we have

f
arithmetic
average

(X) =
∑
i

wiXi . (3.34)

The constraint (3.8) is

g(z∗) = K (3.35)

with
g(z) :=

∑
i

wiX̂i ·e
∑
j aijzj . (3.36)

From

∇z
(

1
2 · z

> · z − λ ·
[
g(z)−K

])∣∣∣∣
z=z∗

= 0 (3.37)

we obtain

z∗i − λ ·
∑
l

aliwlX̂l ·e
∑
j aljz

∗
j = 0 (3.38)

Equations (3.35) and (3.38) can be solved for λ and
the elements of the vector z∗ by the aid of a nonlinear
root finding algorithm such as NL2SOL [DGW81].
The effective geodesic strikes are then

K∗i = X̂i · eξi (3.39)

with

ξ = A · z∗ . (3.40)

As for an initial guess for z∗ in equations (3.35)
and (3.38), we can either use zero, or proceed to find
an expansion as follows.
Defining

X̄ :=
∑
i

wiX̂i and κ := ln(K/X̄) , (3.41)

we rewrite (3.35) as∑
i

wiX̂i ·e
∑
j aijz

∗
j = X̄ · eκ . (3.42)
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We now seek an expansion given by

λ = 0 + κ · λ(1) + κ2 · λ(2) + · · · (3.43)

z∗ = 0 + κ · z(1) + κ2 · z(2) + · · · . (3.44)

Substituting (3.44) into (3.42) and expanding in κ
around 0 gives

∑
i
ωi ·

[
1 +

∑
j
aij

(
κz

(1)
j + κ2z

(2)
j

)
(3.45)

+ 1
2

(∑
j
aijκz

(1)
j

)2
]
= 1 + κ+ 1

2κ
2 +O

(
κ3
)

where we have used the normalized effective weights

ωi :=
wiX̂i

X̄
. (3.46)

Matching coefficients up to order O
(
κ2
)
, equa-

tion (3.45) gives∑
i ωi = 1 (3.47)

ω> ·A · z(1) = 1 (3.48)

ω> ·A · z(2) = 1
2 −

1
2 z

(1)>·A> · Ω ·A · z(1) , (3.49)

with the matrix Ω defined to be diagonal and its ele-
ments being equal to those of ω. Expanding (3.38)
in κ yields

κ · z(1)
i + κ2 · z(2)

i (3.50)

−
(
κ · λ(1) + κ2 · λ(2)

)
·
∑
l

wlX̂lali ·
[
1 +

∑
j
aljκz

(1)
j

]
= O

(
κ3
)

from which we derive

z(1) = λ(1) · X̄ ·A> · ω (3.51)

z(2) = λ(1) · X̄ ·A> · Ω ·A · z(1)λ(2) · X̄ ·A> · ω
(3.52)

by matching coefficients of κ up to second order.
Combining (3.48) and (3.51) results in

λ(1) =
1

X̄
· 1

ω> · C · ω
(3.53)

and hence

z(1) =
A> · ω
ω> · C · ω

. (3.54)

Further, combining (3.49) and (3.52) produces

λ(2) =
1

X̄
· 1

ω> · C · ω
·

[
1

2
− 3

2
· ω
> · C · Ω · C · ω
(ω> · C · ω)

2

]
(3.55)

whence

z(2) =
1

2

(
1 + 2 · A

> · Ω ·A
ω> · C · ω

− 3 · ω
> · C · Ω · C · ω
(ω> · C · ω)

2 · 1

)

· A> · ω
ω> · C · ω

(3.56)

with 1 denoting the identity matrix. This finally
gives us the second order expansion

z∗ = κ · A> · ω
ω> · C · ω

(3.57)

+ κ2 · 1

2

(
1 + 2 · A

> · Ω ·A
ω> · C · ω

− 3 · ω
> · C · Ω · C · ω
(ω> · C · ω)

2 · 1

)

· A> · ω
ω> · C · ω

+ O
(
κ3
)
.

As an example, we show in figure 3 the first and
second order expansion solutions for a monthly ob-
served Asian option of one year maturity in com-
parison with a numerical solution for an arbitrarily
chosen term structure of arbitrage-free implied volat-
ility.
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NL2SOL

implied volatility [right axis]

T

ξ σ̂(T )

Figure 3: An example for the effective strike adjustments (3.40)
of first and second order as given in (3.57) in comparison with
a numerical solution by the aid of NL2SOL of equations (3.35)
and (3.38) for a monthly observed Asian option of one year
maturity with an arbitrarily chosen term structure of arbitrage-
free implied volatility. All forwards were equal to 1, and the

strike was at 0.3.

When any of the weights are negative, it is pos-
sible for X̄ to be zero. As a consequence, ln(K/X̄)
is undefined, and none of the above equations can be
evaluated. In that case, it may be better to use an
expansion in

κ̃ := K − X̄ , (3.58)

which gives us, to first order

z̃∗ =
κ̃

X̄
· A> · ω
ω> · C · ω

i.e.,

z̃∗i =
K − X̄
vX̄

∑
j

aijwjX̂j (3.59)
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with

vX̄ :=
∑
i,j

wiX̂icijwjX̂j . (3.60)

Analytical sensitivities of the exact solution

The geodesic strikes are obtained as the solution of
equations (3.35) and (3.38). Multiplying (3.38) by A
from the left, we reformulate this as

ξ − λ · C · γ = 0∑
j γi −K = 0

(3.61)

with
γi := wiX̂ie

ξi ≡ wiK
∗
i (3.62)

for convenience of notation and brevity of the results.
In order to compute the sensitivity of the geodesic
strikes K∗i to any input, which, for now, we indicate
with a generic prime, i.e., K∗i

′, we use (3.39) giving
us

K∗i
′ =

K∗i
X̂i

· X̂ ′i + K∗i · ξ′i (3.63)

and from hereon focus on the computation of ξ′i.
Since the nonlinear system (3.61), which implicitly
defines the geodesic strikes, is invariant to the change
of any of the input parameters, we obviously have[

ξ − λ · C · γ
]′

= 0[∑
j γi −K

]′
= 0 .

(3.64)

We combine this with the definitions

Γ := diag{γ} (3.65)

χi = ln(X̂i) (3.66)

and
γ′i = γi · χ′i + γi · ξ′i (3.67)

into the generic sensitivity equation system[
1− λ · C · Γ

]
· ξ′ − C · γ · λ′

= λ ·
[
C ′ · γ + C · Γ · χ′

]
γ> · ξ′ = −γ> · χ′

(3.68)

which is of course linear in the sensitivities ξ′ and λ′.
We note that this linear system has the same matrix
of coefficients on the left hand side for all possible
sensitivities that we might intend to compute: irre-
spective of whether we are interested in the sensit-
ivity to a volatility, a correlation, or a forward, the
left hand side is always the same, and it is always
a linear system of size m + 1 if m is the number of
geodesic strikes. It can thus be computationally ad-
vantageous to solve all sensitivities in one sweep, for
instance with a single QR factorization or a single
Moore-Penrose pseudo-inverse to safeguard against
singular (under-determined) dependencies.

Sensitivity to forwards

In this case, the linear system (3.68) reduces to[
1− λ · C · Γ

]
· ξ(i) − C · γ · λ(i) = λ · C ·Θ · ei

γ> · ξ(i) = −e>i ·Θ · ei
(3.69)

wherein ei is the i-th unit basis vector,

Θ := diag{γ}/ diag{X̂} , (3.70)

and the superscript (·)(i) represents the derivative
with respect to the forward X̂i.

Sensitivity to the covariance matrix

Using the superscript notation (·)(kl) for the deriv-
ative of any quantity (·) with respect to the (k, l)-
element ckl of the covariance matrix C, we obtain[

1− λ · C · Γ
]
· ξ(kl) − C · γ · λ(kl) = λ · C(kl) · γ

γ> · ξ(kl) = 0
(3.71)
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