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1 The curse of dimensionality

The curse of dimensionality

There are many applications for the calculation of forward-conditional
expectation that, in one dimension, we would likely solve by the aid of
backward induction solvers:

American / Bermudan options

CVA, DVA, FVA, and other XVA calculations require an expectation con-
ditional on being positive (or negative), e.g.:

E
[
(v(t,x))+ · f(x)

]
= E

[
v(t,x) · 1{v(t,x)>0} · f(x)

]
(1.1)

for some function f(x) ≥ 0.
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1 The curse of dimensionality

In low dimensionalities, this can be computed directly with conventional,
i.e., lattice-based finite differencing methods.

The computational effort of lattice-based methods grows typically like

nd

where n is the number of lattice nodes in each dimension and d is the
dimensionality.

This nd growth is also known as the curse of dimensionality.
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1 The curse of dimensionality

In moderate or higher dimensions, the required expectations can, in prin-
ciple, be computed with Monte-Carlo simulations1.

When regression methods are used in (moderately) high dimensions for
the interim conditional valuation criteria2, typically, only linear regression
functions are employed.

This is because the computational effort of the required regression calcu-
lations grows dramatically when bi-linear or even higher order regression
polynomials (or other basis functions) are used3.

1For a survey of available American/Bermudan Monte Carlo methods, see, e.g., [JA10].
2as is in practice, nowadays, seemingly, always the case
3Your mileage may, of course, vary.
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1 The curse of dimensionality

The burden here is the calculation of the higher order cross-moments of
the regression variables. There are(

d+ k
k

)
= (d+ k)!

k!

to be computed4!

Arguably, this is another variation of a curse of dimensionality.

4with k being the maximum total power of the multinomial
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2 Basis function approaches

Basis function approaches

There are a variety of methods based on a decomposition

f(x) ≃
∑

j

λjvj(x) (2.1)

to solve PDEs like

[∂tf+ ] L · f = g(x[; t]) (2.2)

where L is a generic advection-diffusion operator.
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2 Basis function approaches

Finite elements.
Spatially limited basis functions.
Usually piecewise linear, i.e., only C0.
Second derivatives of vj(x) are removed from the PDE by means of integ-
ration by parts (variational formulation).
In one dimension, the finite elements are usually tent functions5.

-2

-1

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9

  f(x)   [unknown function]

  f*(x) [basis function approximation of f(x)]

vⱼ(x)  [finite elements, here: tent basis functions]

λⱼ [computed basis function weights]

In one dimension, finite elements give us the same linear systems as the
standard nearest-neighbour-stencil finite difference method.

5aka triangular functions
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2 Basis function approaches

Higher order polynomials, e.g., hp-FEM.

Spectral bases ( Chebyshev polynomials)

Wavelets

Radial basis functions

etc. etc.
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2 Basis function approaches

In all basis function approaches, ultimately, we need to compute the basis
function weight vector λ, e.g., by matching the function value f(x) in a
set of interpolation nodes {xi}:

V · λ = f (2.3)

with

(V )ij = vj(xi) (2.4)

In one dimension, the interpolation matrix (aka mass matrix in the context
of finite elements) V is guaranteed to be non-singular if

the basis functions vj(·) are linearly independent

and
the interpolation nodes {xi} are distinct.
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2 Basis function approaches Scattered data interpolation

This brings us to...
... the Mairhuber-Curtis theorem [Mai56, Cur58]:

In two or more dimensions, a generic interpolant leads to a sin-
gular system for infinitely many configurations of interpolation
nodes [FF15b].

For any basis function set, the i-th row of the interpolation matrix V is
uniquely determined by the interpolation node xi.

Exchanging rows of a matrix switches the sign of its determinant.

In one dimension, in a gradual continuous move of adjacent interpolation
nodes, we can only exchange them via an intermediate configuration when
they coincide.

The collision point is also the point when the interpolation matrix has
two identical rows, and thus a zero determinant (and thus is singular),
but not before, and not after.
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2 Basis function approaches Scattered data interpolation

Here’s the kicker...

In two or more dimensions, we can exchange interpolation nodes via paths
that do not intersect.

Example in 2D: interpolation nodes

We move these 
two nodes around 

to swap places
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2 Basis function approaches Scattered data interpolation

Taking 3 basis function sets, we compute the matrix condition number as
a function of the rotation of the designated two interpolation nodes around
their common midpoint:

159.97°

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

1.E+12

1.E+14

1.E+16

0° 45° 90° 135° 180°

Mass matrix condition number

Basis set #1

Basis set #2

Basis set #3

path rotation angle
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2 Basis function approaches Scattered data interpolation

Often it is more instructive to view the reciprocal condition number:

159.97°
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0° 45° 90° 135° 180°

Mass matrix reciprocal condition number

Basis set #1

Basis set #2

Basis set #3

Basis set singularity

#1 1, x, y, x · y, x2 + y2 obvious at 90◦ by symmetry

#2 1, x, y, x2, y2 unexpected at 159.97◦

#3
√

1 + |xj − rj |2 obvious at 90◦ by symmetry

original interpolation nodes

singular node configuration

159.97° rotation

{rj} are the original (unrotated) interpolation nodes
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2 Basis function approaches Scattered data interpolation

However, one can design interpolation systems (in high dimensions) that
are always regular.

Crucially, the basis functions︸ ︷︷ ︸ must depend on the interpolation data!

v⋆(t,x) =
m∑

s=1
cs · ψs(x) (2.5)

REPEAT:

Not just the
︷ ︸︸ ︷
interpolation coefficients, but also the basis must depend

on the data!
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2 Basis function approaches Scattered data interpolation

In 1979, R. Franke produced a 380(!) page technical report comparing
29(!) different surface interpolation methods [Fra79].

The most impressive method in these tests is the multiquadric
method of Hardy [Har71]. It is consistently best or near best in
terms of accuracy, and always results in visually pleasant surfaces.

Multiquadrics are hyperboloid radial basis functions of the form

ϕj(x) =
√

1 + ϵ2|x − rj |2 (2.6)

[ϵ is the shape parameter; rj is the centre or basis node ]

× ⋄ Peter Jaeckel (OTC Analytics) Gaussian Kissing Autumn 2023 16 / 92

http://jaeckel.org
http://otc-analytics.com
http://jaeckel.org
http://otc-analytics.com


pj@otc-analytics.com

2 Basis function approaches Scattered data interpolation

In 1984, Micchelli [Mic84] proved that the linear system to compute the
interpolation coefficients for the “MultiQuadric Surface” (MQS) method
[as it was then known] is always regular (in full arithmetic precision).

The radial nature of the multiquadric hyperboloids subsequently led to a
flurry of developments of

Radial Basis Functions.

The beauty of all this is that the input data can be arbitrarily scattered!
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2 Basis function approaches Scattered data interpolation

Indeed, if we repeat the continuous-path-interpolation-node-exchange ex-
periment in 2D:
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basis nodes
interpolation nodes

We rotate these 
two points around 

their centre
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Mass matrix reciprocal condition number

RBF with centres linked to interpolation nodes

No singularities!
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3 Radial Basis Functions Definition and types

Radial Basis Functions
A radial basis function decomposition for a function f(x) : Rd → R is
typically defined by

f⋆(x) =
m∑

j=1
λj · ϕ(|x − xj |; ϵj) (3.1)

with ϕ(r; ϵ) being one of:-

Multiquadric [Har71]
√

1 + (ϵr)2 [aka hyperboloid ]
Inverse Multiquadric [Har71] 1/

√
1 + (ϵr)2

Gaussian e−(ϵr)2

Thin Plate Spline (ϵr)2 ln(|ϵr|)

C0 Matérn e−|ϵr|

C2 Matérn e−
√

3 |ϵr| · (1 +
√

3 |ϵr|)

C4 Matérn e−
√

5 |ϵr| · (1 +
√

5 |ϵr| + 5(ϵr)2/3)
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3 Radial Basis Functions Definition and types

In stark contrast to finite elements, radial basis functions are not necessarily
locally concentrated functions.
This is particularly true for the so praised multiquadric basis:

-0.5

0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3

Multiquadric
[hyperbolic]

Inverse
Multiquadric

Thin Plate
Spline

Gaussian

C⁰ Matérn

C² Matérn

C⁴ Matérn

Multiquadric
[hyperbolic]
asymptotes
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3 Radial Basis Functions Fast facts worth knowing about RBFs

One of the amazing properties of multiquadrics (and inverse multiquadrics)
is that, under certain technical conditions on f(x), in one dimension, RBF-
interpolation on a regular grid with node distance h converges to f(x)

exponentially.

That’s
|f(x) − f∗(x)| ∼ O

(
e−c/h

)
(3.2)

which is obviously much faster than any power convergence where

|f(x) − f∗(x)| ∼ O (hp) (3.3)
for any p.

This result was derived more than twenty years after Hardy picked them out
as the best practical choice for scattered data interpolation!

What’s more, “Madych and Nelson showed that for the space of condition-
ally positive definite functions to which MQ belongs, a semi-norm exists and
is minimized by such functions” [Kan90b].
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3 Radial Basis Functions Fast facts worth knowing about RBFs

RBF-interpolation converges to polynomial interpolation as ϵ → 0.
ϵ = 10:
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f*(x)
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λ [right axis]

Reciprocal condition number κ(Φ)−1 = 0.0152.
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3 Radial Basis Functions Fast facts worth knowing about RBFs

ϵ = 2:
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Reciprocal condition number κ(Φ)−1 = 0.0061.
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3 Radial Basis Functions Fast facts worth knowing about RBFs

ϵ = 0.25:
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3 Radial Basis Functions Fast facts worth knowing about RBFs

ϵ = 0.075:
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Reciprocal condition number κ(Φ)−1 = 1.61E-13.
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3 Radial Basis Functions Fast facts worth knowing about RBFs

ϵ = 0.0475:
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Reciprocal condition number κ(Φ)−1 = 1.55E-16.
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3 Radial Basis Functions Fast facts worth knowing about RBFs

ϵ = 0.001:
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Reciprocal condition number κ(Φ)−1 = 1.46E-18. SVD cut-off at 2.23E-16.
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3 Radial Basis Functions Fast facts worth knowing about RBFs

The limit of the shape parameter ϵ → 0 is known as the flat limit.
It is often desirable since it (typically) approximates the “smoothest”
solution similarly to how it converges to the polynomial solution in the
1D case.

In the flat limit (ϵ → 0), all terms like
√

1 + ϵ2r2 or e−ϵ2r2 go to 1,
rendering the interpolation matrix as a “flat” array of 1s.

We saw how the interpolation becomes ragged as we approach this limit.

Once κ(Φ)−1 approaches or drops below the machine’s floating point
resolution, the solution incurs more and more truncation-induced noise.

Once again, Subtractive Cancellation raises its ugly head...

One should (at least) use a Moore-Penrose (SVD) solution6.

6e.g., via Lapack’s “Divide-and-Conquer” algorithm (DGELSD)
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3 Radial Basis Functions Fast facts worth knowing about RBFs

Fornberg and Flyer [FF15b] gave some concrete analytical examples where
the matrix condition number dependence on ϵ is as bad as O(ϵ−84).

Truncation (via SVD) aside, actual remedial approaches include:-
“The most straightforward approach for calculating in the small ϵ regime
is to use extended precision arithmetic.” [FF15b].
Alas, due to how the condition number scales as a power of ϵ, this quickly
leads to the need for hundreds of digits. Not directly practical7.
The “Padé-Contour” method [FWL04]. Complex (literally, by taking ϵ
into the complex plane), involving many evaluations of the linear system
solution+interpolation, (semi-)analytical expansions etc.
RBF-QR [FP07, FF15b]: depends on the geometry, only up to 3D (afaik).
Think Spherical Harmonics decomposition ...

There is plenty more to say on RBFs — please also have a look at my
2017/18 presentation on Cluster Induction [Jäc17].
7An alternative approach is to represent all numbers like 1 + ν with tiny ν [and those resulting from

their arithmetic] as ( m+p
n+q

) [“FloatFractions”] where m, n ∈ Z and p, q ∈ R via operator overloading.
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4 Meshless induction Meshless, not pointless

Meshless induction

Kansa [Kan90a] demonstrated that, apart from serving well to interpolate
a value surface over scattered data, radial basis function decompositions
are also useful to approximate partial derivatives of the value surface.

Next [Kan90b], given an advection-diffusion PDE

∂tf + L · f = 0 (4.1)

substitute the decomposition

f(x) = ϕ(x)⊤ · λ (4.2)

for f , where ϕ(x) is a vector of radial basis functions

centered in an arbitrarily scattered cluster of vertices.
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4 Meshless induction Meshless, not pointless

This gives us

ϕ(x)⊤ · λ̇(t) + (L · ϕ (x))⊤ · λ(t) = 0 . (4.3)

with time-dependent weights λ(t).
Note that L applies analytically to the individual basis functions ϕi(x) !

Denoting the result of the analytical evaluation of L applied to ϕ(x) as

Lϕ(x) := L · ϕ(x) (4.4)

we now have
ϕ(x)⊤ · λ̇(t) + Lϕ(x)⊤ · λ(t) = 0 , (4.5)

i.e., a8

“clustered” ordinary differential equation in λ(t).
Note that x takes on the role of a parameter vector!

8sometimes also referred to as meshless method of lines [“MOL”]
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4 Meshless induction Meshless, not pointless

In order to meet Micchelli’s non-singularity criterion, we ask for the cluster
ODE to hold for x to be in any of the cluster vertices {xi} ∀ i = 1, . . . , n
where the radial basis functions are centered.

Defining the matrices Φ and LΦ whose elements are

(Φ)ij = ϕ(|xi − xj |; ϵj) (4.6)

(LΦ)ij = L · ϕ(|x − xj |; ϵj)|x=xi
, (4.7)

we obtain the cluster ODE system

Φ · λ̇(t) + LΦ · λ(t) = 0 . (4.8)

REMARK. It is in principle possible to have more or fewer basis functions than locations
at which we ask for the original cluster ODE (4.5) to hold, or to choose locations different
from the basis centres. Either way, we will then demand for the system (4.8) to be
best matched in a least squares sense, naturally leading to the use of Singular Value
Decomposition for its solution.
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4 Meshless induction Meshless, not pointless

At this point, I will skip a significant amount of technical details such as:-

analytical expressions for the matrix elements of LΦ for some RBF types,
for, say, the usual advection-diffusion generators of affine models;

what numerical integration schemes are suitable for backward (or forward)
induction in the time direction and their stability features / the spectrum
of the resulting discrete-time-step propagator matrices;

useful spatial coordinate transformations that compensate for the typical
∼

√
t growth of our domain of interest in financial applications;

other useful features such as the addition of a constant and linear basis
functions (taking care of essentially linear instruments);

the impact of heterogenous ϵj [FZ07] and how to choose it (I typically
set it as the reciprocal of the nearest cluster neighbour distance !);

Please see my 2017/18 presentation on Cluster Induction [Jäc17] for more
information on these points.
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4 Meshless induction Convergence as nT → ∞.

Vanilla 1Y ATM FX option with Black-Scholes and ncluster = 27 − 1 = 127.
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See, e.g., [Jäc13], for the 2nd order implicit scheme. See [Jäc17] for all other parameters etc.

The “Spectral” method is an approximation for the matrix exponential et·G.
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4 Meshless induction Convergence as nT → ∞.

1Y ATM composite option with Black-Scholes and ncluster = 28 − 1 = 255.
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4 Meshless induction Convergence as nT → ∞.

1Y ATM FX option with Linear Gaussian Markov model and ncluster = 255.
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4 Meshless induction Convergence as nT → ∞.

1Y composite option with Linear Gaussian Markov model and ncluster = 511.
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5 Cluster generation

How do we generate the cluster?

Sadly, most research is done in just 1 or 2 dimensions! (!!!)

There is little in the literature for more than 2 dimensions, up to which
researchers tend to use fairly regular point distributions.

A transfer of ideas from finite element methods is appealing.

Only that little is out there for more than 3 dimensions, and effective
(adaptive) tesselations for FEM tend to be specialised for 2 dimensions.

Quote [FF15a]:
In 2-D: Quick to go from quasi-uniform nodes to well-balanced Delaunay
triangularization.

In 3-D: Finding good tetrahedral sets can even become a dominant cost.
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5 Cluster generation Prof. Sobol’ to the rescue!

To cut a long line of experimental results short, this seems to work best:

In d dimensions, draw Sobol’ vectors and transform them from uniform
to Gaussian coordinates via the inverse cumulative normal function.

Gaussian Sobol’ vectors

We use these as our normalised coordinate cluster nodes9.

However, we are not finished yet. Theory and experiments suggest that
the final result depends a lot on the “quality” of the cluster.

So, let’s optimize the cluster quality.

What quality?

9For details as to how these are/can be mapped to calculation coordinates, see [Jäc17].
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5 Cluster generation Distortion

Consider that each point x ∈ Rd is represented by its nearest cluster node
x → ξk̂(x;C) (5.1)

with
k̂(x; C) := arg min

k∈{1,..,N}
|x − ξk| (5.2)

where N is the number of nodes in the given cluster C = {ξ1, ..., ξN }.

This is the classical definition of a quantization.

Then, we call the expectation10

D(C) := E
[∣∣∣x − ξk̂(x;C)

∣∣∣2] (5.3)

the distortion [PD51] of C’s representation of Rd.

Since we operate with x to represent independent financial risk factors, we take the ex-
pectation under a multi-variate standard normal distribution for x (with zero correlation).

10This is the mean square distortion of Panter and Dite [PD51]. In other contexts,
we may also find its square root defined as the root mean square (RMS) distortion.
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5 Cluster generation Distortion

An image says more than a thousand words to explain the name “distortion”:
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5 Cluster generation Minimum Distortion Cluster

A classical result in statistics is that the distortion D(C) is minimal when

ξk · E
[
1{k̂(x;C)=k}

]
= E

[
x · 1{k̂(x;C)=k}

]
(5.4)

for all k ∈ {1, .., N}.

This is to say that ξk must be equal to the first moment of x conditioned
on the domain of all points in Rd whose nearest cluster node is ξk.

We call the cluster C∗
d(N) that satisfies (5.4) the

Minimum Distortion Cluster

of N nodes in d dimensions, though it is better known11 as the

Centroidal Voronoi Tesselation.

11Some authors in mathematical finance have unfortunately referred to such a choice of nodes simply
as a “quantization” which is not in line with the rest of mathematics, physics, and engineering, where a
quantization only means the choice of any representation of a continuum by a subset of discrete values,
without any statement about the rule that led to the choice of nodes.
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5 Cluster generation 2D Centroidal Voronoi Tesselations
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5 Cluster generation 2D Centroidal Voronoi Tesselations
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5 Cluster generation Minimum Distortion Cluster

Due to considerable geometrical complications, there is no competitive
“analytical” method to compute C∗

d(N) when d is more than two(-ish).

A simple algorithm attributed to Lloyd [Llo57] is to iterate

ξk
(j+1) :=

E

[
x·1{k̂(x;C(j))=k}

]
E

[
1{k̂(x;C(j))=k}

] = E
[
x
∣∣∣k̂(x; C(j)) = k

]
. (5.5)

This algorithm is also known as Voronoi iteration or Voronoi relaxation.

Again, in more than two (or so) dimensions, it is not practical to compute
the conditional expectations in (5.5) (semi-)analytically whence we resort
to a good old-fashioned Sobol’-Monte-Carlo evaluation12.

12Here, too, unfortunately, some authors have referred to the numerical evaluation of those conditional
expectations by means of a sampling method as “stochastic” gradient descent methods despite the fact
that none of the above has anything to do with stochasticity or randomness or the concept of any
[stochastic] process in time.
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5 Cluster generation Minimum Distortion Cluster

The Voronoi-Sobol’ Iteration algorithm in a nutshell:
Precompute a d-dimensional sampling set of Gaussian Sobol’-Monte-Carlo draws, say
M =32767 points, xi for i = 1, .., M .

Start with a d-dimensional initial cluster C(0) =
{

ξk
(0)} comprised by Gaussian Sobol’-

Monte-Carlo draws of size k = 1, .., N .

Then, begin the Outer Iteration:-
Zero-out a workspace of N vectors Ξk ∈ Rd and counter variables mk for k = 1, .., N .

Do the Inner Loop over all of the M sampling points xi, for each to find the nearest
(previous) cluster node ξk̂

(j) with index k̂ = k̂(xi, C(j)), and set

Ξk̂ += xi and mk̂ += 1 .

Upon completing the Inner Loop over the sampling points (i = 1, .., M), set

ξk
(j+1) := Ξk/mk for k = 1, .., N.

Terminate the Outer Iteration if ξk
(j+1) ≡ ξk

(j) ∀ k = 1, .., N ,
or if a certain number of maximum iterations has been reached (e.g., 127).
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5 Cluster generation Minimum Distortion Cluster

Notes:-

The Outer Iteration (5.5) may not converge (!). This is due to the discrete
underlying sampling set used to evaluate the conditional expectation.

The above mentioned non-convergence is nothing to worry about!
It simply means that the algorithm eventually just cycles over a discrete
set of equally good estimates for C∗ for the given size N , dimensionality
d, and Gaussian-Sobol’ sampling set.

Cache all computed clusters in memory for this run-time session since
more computations are likely to want the same! Caching it mitigates the
possibly considerable time it can take to create this cluster.

A good small cluster (N ≤ 255) wins over a large bad cluster.
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5 Cluster generation Minimum Distortion Cluster

Grow the cluster N size gently with increasing dimensionality d.
More on that later.

In higher dimensions, such optimum-representation cluster computation
techniques are part of a range of machine learning algorithms, e.g.,
“k-Means Clustering”.

Caveat emptor: you may find the oft-praised “Anderson acceleration”
technique of limited use. Think Richardson extrapolation, c.f., [Bac22].

Instead, I found the Hamerly algorithm [Ham10] of great benefit!
It can also be multi-threaded.

See Wikipedia [Llo18] for more acceleration techniques and for links how
these methods are also used in finite element calculations.
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5 Cluster generation Minimum Distortion Cluster

For ncluster = 255, nsampling = 131071, ndim = 2, starting with:
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sqrt(distortion) = 0.185991
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5 Cluster generation Minimum Distortion Cluster

After 127 iterations, we arrive at:
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5 Cluster generation Minimum Distortion Cluster

Here with a different algorithm based on initial sub-sampling (∼ 3× faster):
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6 Cluster analysis Convergence as ncluster
↗ .

2D: 1Y ATM composite option with Black-Scholes and nT = 64.
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All clusters used here and in the following are optimised via Voronoi iteration as described.
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6 Cluster analysis Convergence as ncluster
↗ .

3D: 1Y ATM FX option with Linear Gaussian Markov model and nT = 64.
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6 Cluster analysis Convergence as ncluster
↗ .

5D: 1Y composite option with Linear Gaussian Markov model and nT = 64.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
0 20 40 60 80 100 120 140

First order implicit

Second order implicit

BDF2

Spectral

???

log10(|rel.error|)

ncluster

5-dimensional
E[(EURUSD · GBPUSD − 1.4224)+]

This warrants a closer look.
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6 Cluster analysis What makes a good cluster?

We notice that the onset of the “irregular” behaviour depends on the
dimensionality.
Distortion doesn’t give us any signal as to what’s going on:

ncluster
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Short of better ideas, we resorted to visual inspection.
We also computed the nearest neighbour distance variance (n.n.d.variance)
for each cluster C defined as V

ξ∈C
[|ξ − ξk̂(ξ;C)︸ ︷︷ ︸

“nearest neighbour of ξ in cluster C”

|] . (6.1)
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6 Cluster analysis What makes a good cluster?

Note: blue edges represent the Delaunay triangularization and are not part of the cluster.
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6 Cluster analysis What makes a good cluster?
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6 Cluster analysis What makes a good cluster?
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6 Cluster analysis What makes a good cluster?

× ⋄ Peter Jaeckel (OTC Analytics) Gaussian Kissing Autumn 2023 59 / 92

pj@otc-analytics.com

6 Cluster analysis What makes a good cluster?
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6 Cluster analysis What makes a good cluster?
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6 Cluster analysis What makes a good cluster?
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6 Cluster analysis What makes a good cluster?

My daughter’s sketch of a rather bad 2D cluster :

N=13, n.n.d.v. = 0.054
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6 Cluster analysis What makes a good cluster?

In 2 dimensions, the nearest neighbour distance variance seems to give
us an indication when clusters first become “irregular”.

As the cluster size grows, we can visually see how their regularity var-
ies from one size to the next, even if it is non-trivial to quantify this
mathematically.

What about 3 dimensions?
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6 Cluster analysis What makes a good cluster?
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6 Cluster analysis What makes a good cluster?
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6 Cluster analysis What makes a good cluster?
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6 Cluster analysis What makes a good cluster?
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6 Cluster analysis Making sense of it all

Let’s revisit the nearest neighbour distance variance:
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We see a sudden jump in each dimensionality.

In 2 and 3 dimensions, this happens where the ideal spherical packing
number is exceeded for the first time.
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6 Cluster analysis Making sense of it all

The inefficient frontier.
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7 Gaussian Kissing

It turns out, that the jumps are related to the point when adding one
more cluster node would not be able to fit into the quantized Gaussian
distribution without causing asymmetry.

Recall that our multivariate Gaussian distribution has spherical symmetry,
and that we associate a segment of space with each cluster node.

Going from n to n + 1 nodes is similar to trying to fit another spatially
extended, let’s say, approximately, spherical node into the cluster.

This raises the question: how many (hyper)spheres of (approximately)
equal size can be fitted neatly around a centre sphere?

This is known as the Kissing Number Problem .

Quote Wikipedia [Kis18]:
In geometry, the kissing number of a mathematical space is defined as the
greatest number of non-overlapping unit spheres that can be arranged in that
space such that they each touch a common unit sphere.
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7 Gaussian Kissing The Kissing Number

More Wikipedia [Kis18]:
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7 Gaussian Kissing Newton versus Gregory
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7 Gaussian Kissing Spherical kissing number scaling law

In 1, 2, 3, 4, 8, and 24 dimensions, the kissing number is known exactly.
We also have some upper and lower bounds up to 72D [Kis18, Coh18].
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log-linear regression [as of 20] ≈ 42·(√2)ᵈ

42·(√2)ᵈ

The spherical kissing number (upper bound) scales approximately like
42 ·

√
2 d

. (7.1)
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7 Gaussian Kissing How does this compare to our cluster induction results?

Comparing Gaussian cluster results with spherical kissing numbers: 2D.
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7 Gaussian Kissing How does this compare to our cluster induction results?

Comparing Gaussian cluster results with spherical kissing numbers: 3D.
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7 Gaussian Kissing How does this compare to our cluster induction results?

Comparing Gaussian cluster results with spherical kissing numbers: 5D.
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7 Gaussian Kissing Kissing numbers vs n.n.d.v. cliffs
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7 Gaussian Kissing Conclusions

Conclusions

Backward induction can be done lattice-free for advection-diffusions.
I have been able to run calculations with cluster induction in up to 11 dimensions13.

Radial basis functions are immensely useful.

We can compute Minimum Distortion Clusters, aka

Centroidal Voronoi Tesselations

in a timely fashion14 by the aid of Sobol’ sampling and the

“Hamerly-k-Means Clustering”

algorithm [Ham10].

13though perhaps as yet not robustly enough for industrial deployment
14Note that optimal clusters are problem-independent and can be cached.
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7 Gaussian Kissing Conclusions

We define the

Gaussian Kissing Number N G(d)

in d dimensions as the largest number n such that the

Centroidal Voronoi Tesselation

of n+ 1 nodes15 under an uncorrelated d-dimensional standard Gaussian
density is comprised by all n non-central nodes having equal distance r
to the origin:

N G(d) = max N
∣∣∣∣ |ξ| = r ∀ ξ ∈ C∗

d(N) \ 0, for some r ∈ R+

(7.2)

In 1, 2, and 3 dimensions, the Gaussian Kissing Number N G(d) is equal
to the Spherical Kissing Number N S(d).

15one central node is pinned at the origin
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7 Gaussian Kissing Conclusions

We cannot expect N G(d) = N S(d) to hold exactly for all d since the
central and the peripheral zones are neither the same shape nor the same
volume, nor have the same probability associated with them.

We may guess, though, that

N G(d) ≈ N S(d) (7.3)

by virtue of the spherical symmetry of the Gaussian distribution.

Experimental evidence appears to support (7.3).

Some exact values and some bounds are known [Kis18, Coh18] for N S(d):
d 1 2 3 4 5 6 7 8 9 10 11 12

lower bound 40 72 126 306 500 582 840
upper bound 44 78 134 363 553 869 1356

2 6 12 24 240
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7 Gaussian Kissing Conclusions

For numerical purposes, choose a cluster size that is either well above, or
(just) below N G(d) to avoid an unfortunately ill formed cluster.

Freed from the confines of any lattice, the curse of dimensionality “scales”
approximately like

42 ·
√

2 d
. (7.1)

This compares favourably with the lattice-based node number scaling

nd (7.4)

where n is the number of nodes in each direction (typically at least 7).

In practice, for a variety of reasons, we typically use only 200-500 nodes even when d = 12.
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8 Appendix

Appendix
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8 Appendix 4D projected onto dimensions (1,2,3)

4D projected onto dimensions (1,2,3) — no clear sudden jump

Note: blue edges are the Delaunay triangularization in the 3D projection and not part of the cluster.
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8 Appendix 4D projected onto dimensions (2,3,4)

4D projected onto dimensions (2,3,4) — no clear sudden jump
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8 Appendix 2D and 3D with N=257

2D 3D

N ≫ N G(2) = 2 N ≫ N G(3) = 6
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8 Appendix 4D with N=257

4D on dimensions (1,2,3) 4D on dimensions (2,3,4)

N ≫ N G(4) ≈ 24 N ≫ N G(4) ≈ 24
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8 Appendix 8D with N=257

8D on dimensions (1,2,3) 8D on dimensions (6,7,8)

N ≳ N G(8) ≈ 240 N ≳ N G(8) ≈ 240
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8 Appendix 12D with N=257

12D on dimensions (1,2,3) 12D on dimensions (10,11,12)

Note the low nearest neighbour distance variance!
N ≪ N G(12) ∼∈ [840, 1356] N ≪ N G(12) ∼∈ [840, 1356]
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