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1 Introduction

One of the most important characteristics of the Monte Carlo simulation method is its intrinsically forward-looking
nature. Whilst this feature enables us to take into account inherently path-dependent payoff structures of any derivative
contract with comparative ease, it makes it difficult to accommodate the inclusion of any early exercise rights into the
contract. The two most commonly used methods to handle products with early exercise opportunities within a Monte
Carlo simulation framework are regression-based techniques (which are covered in EQF 013 / 006) and exercise
boundary optimization approaches which are discussed in this chapter.

2 Optimal stopping time as exercise boundary optimization

For the sake of generality, we assume that we are dealing with the valuation of a financial product Π0 with embedded
exercise optionality and discrete cashflows that span m time horizons t1 < ... < tm, with the current time being
t ≡ t0. The product is considered to have two underlying contracts A and B of contingent cashflows which both,
individually, contain no exercise optionality. The product Π0, initially, pays the same cashflows as product A, but,
in addition, permits the exercise option holder to switch into B at one of the time horizons tj . This formulation is
fairly generic and encompasses practically all callable structures, including what is sometimes referred to as “options
on options” or “higher order options” since those can be reformulated as a sequence of payable cashflows to continue
until a final contingent payoff is attained, or to opt out at any of the intermediate exercise times.

Assuming a finite-dimensional Markovian representation of our usual probability space given a state vector x, the
contingency of the cashflows aj in product A means that aj = aj(x(tj)), and likewise for product B. Risk-neutral
valuation of the exercisable financial product Π0 requires that we identify the optimal exercise strategy represented
by the optimal stopping time. Valuation of Π0 in the filtration Ft0 , denoted by Vt0 [Π0], is given by

Vt0 [Π0] = N(x(t0)) · sup
τ

E
M(N)
t0

τ−1∑
j=1

aj(x(tj))
N(x(tj))

+
m∑
j=τ

bj(x(tj))
N(x(tj))

 (2.1)

wherein the discrete random variable τ ∈ 1, ...,m is the stopping time index, N(·) is the chosen numéraire, and
E
M(N)
t0

[f ] is the expectation of any given f under the measure induced by the numéraire in the filtration Ft0 . Define
Πk in complete analogy to the financial product Π0 except that it can only be exercised on or after tk. A crucial
observation in the following is that, if we had knowledge of the optimal stopping time process

τ?k := arg sup
τ |τ≥k

E
M(N)
t0

τ−1∑
j=1

aj(x(tj))
N(x(tj))

+
m∑
j=τ

bj(x(tj))
N(x(tj))

 , (2.2)

we could value Πk by means of the simple expectation

Vt0 [Πk] = N(x(t0)) · EM(N)
t0

k−1∑
j=1

aj(x(tj))
N(x(tj))

+
τ?
k−1∑
j=k

aj(x(tj))
N(x(tj))

+
m∑

j=τ?
k

bj(x(tj))
N(x(tj))

 . (2.3)
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By virtue of the assumed Markovian representation in the state vector x(t), it is possible to rephrase the valuation
problem based on an indicator function Ik(x(tk)) which is one when exercise is optimal and zero otherwise. This
gives us the recursive formulation

Vt0 [Πk] = N(x(t0)) · EM(N)
t0

Ik(x(tk)) ·

k−1∑
j=1

aj(x(tj))
N(x(tj))

+
m∑
j=k

bj(x(tj))
N(x(tj))

+ Ĩk(x(tk)) ·
Vtk [Πk+1]
N(x(tk))

 (2.4)

wherein Ĩk = 1 − Ik. If we define the product Π̂k as Πk minus all cashflows occurring before tk such that the first
cashflow of Π̂k is bk or ak at tk, depending on whether exercise was invoked at tk or not, we have

Vt0 [Π̂k] = N(x(t0)) · EM(N)
t0

Ĩk(x(tk)) ·
ak(x(tk)) + Vtk [Π̂k+1]

N(x(tk))
+ Ik(x(tk)) ·

m∑
j=k

bj(x(tj))
N(x(tj))

 . (2.5)

In this form, it seems that we need to know the conditional value Vtk [Π̂k+1] in order to value Π0 (which is by
construction equal to Π̂0 since no cashflows occur before t1). However, since this conditional expectation appears
inside an expectation over its conditioning filtration, by virtue of the tower law, we can replace it by the sequence of
(numéraire-deflated) contingent cashflow values:

Vt0 [Π̂k] = N(x(t0)) · EM(N)
t0

Ĩk(x(tk)) ·

τ?
k+1−1∑
j=k

aj(x(tj))
N(x(tj))

+
m∑

j=τ?
k+1

bj(x(tj))
N(x(tj))

 + Ik(x(tk)) ·
m∑
j=k

bj(x(tj))
N(x(tj))

 .
(2.6)

In this form, we can view

ck =
τ?
k+1−1∑
j=k

aj(x(tj))
N(x(tj))

+
m∑

j=τ?
k+1

bj(x(tj))
N(x(tj))

(2.7)

as the numéraire-deflated continuation value, and

qk =
m∑
j=k

bj(x(tj))
N(x(tj))

(2.8)

as the numéraire-deflated cancellation value, to arrive at

Vt0 [Π̂k] = N(x(t0)) · EM(N)
t0

[
Ĩk(x(tk)) · ck + Ik(x(tk)) · qk

]
. (2.9)

The only trouble now is that we do not know, a priori, the optimal exercise indicator function Ik(·). We can confidently
say, though, that given any trial exercise decision function Ek(x;λk) (which we choose to indicate exercise if its value
is positive), with parameter vector λk, we have

Vt0 [Π̂k] ≥ N(x(t0)) ·max
λ

E
M(N)
t0

[
1{Ek(x(tk);λk)≤0} · ck + 1{Ek(x(tk);λk)>0} · qk

]
. (2.10)

The key idea of exercise boundary optimization methods for the valuation of exercisable financial products in a Monte
Carlo simulation framework is to use a suitably chosen exercise decision function Ek(x;λk), and to find the value for
λk that maximizes the Monte Carlo estimator objective function

Fk := 1
n

n∑
i=1

(
1{Ek(x(tk);λk)≤0} · cik + 1{Ek(x(tk);λk)>0} · qik

)
, (2.11)

with cik and qik representing the continuation and cancellation values of the i-th path at time horizon tk for a set of
n simulated discrete evolutions of the state vector in the chosen measure. Incidentally, it becomes apparent in this
formulation that the exercise boundary optimization method allows readily for the switch productB to be, in principle,
a different one at each exercise time horizon since the switch payments enter only in the form of the term qik as the
sum of all numéraire-deflated cashflows that are payable if exercise is made at time tk. Once the maximizing value
λk has been established, the procedure continues at tk−1, in analogy to a backwards induction method. An important
observation in this context is that throughout the entire backwards iteration the same set of simulated paths and
associated values can be used. This is a key point for the efficiency of this method. An initial simulation only needs
to store the required state variables x(tk) and associated continuation and cancellation values for each exercise time
horizon. All subsequent optimization calculations can then be done over this precomputed training set. For typical
training set sizes in the range of 8191–65535 paths, the evaluation of the objective function (2.11) is thus very fast
indeed.
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3 Choices of exercise boundary specification

The choice of exercise decision function E(x;λ) is crucial for the performance of exercise boundary optimization
methods. This applies to both the actual choice of the functional form and with it the number of free parameters, as
well as the effective financial variables that are considered the primary arguments of E(·).

3.1 Assessment by related financial contracts

An intuitive approach to the choice of a reduced set of state variables is to monitor related financial contracts. An-
dersen [And00] and Piterbarg [Pit03] describe how swap rate levels and European swaptions values, even if only
attainable in an approximate analytical fashion in any one given model, can be used to capture most of the callability
value for Bermudan swaptions. They also show that for this family of financial contracts, a one-parameter choice for
Ek(x;λ) is often sufficient. This particularly holds when the used model is itself driven by a single Brownian motion,
even if there is no one-dimensional Markovian representation as is the case for Libor market models. In this case, the
exercise decision function can be as simple as

SR(x)− λ ,

with SR(x) denoting the coterminal swap rate, for a payer’s Bermudan swaption. More complicated decision rules
for Bermudan swaptions can be found in [And00].

3.2 Financial coordinate transformations

It is not always intuitive and easy to find a related financial contract that can be used as an exercise indicator and
whose value is attainable (semi-)analytically. Jäckel [Jäc02] discusses the exercise boundary optimization method in
more general terms and suggests, when necessary, the use of tree methods and non-linear transformations of x for the
assessment of the suitability of any particular functional form and choice of variables prior to its use in an exercise
boundary optimization context. The useful observation is made that a functional form that works well for a given
financial contract’s exercise domain delineation with one model, even if the contract is simplified to a significant
extent, practically always also works very well with other models for the fully fledged product version. This makes
it possible, for instance, to visualize exercise domains computed with a non-recombining tree implementation of a
two-factor Libor market model for a short contract life such as 6-non-call-2, and to apply the same functional form
with a fully factorized model for very long-dated contracts.

3.3 A useful generic functional form

In practice, the functional form

Ehyperbolic(x, y; a, b, c, d, g) = a− y + c(x− b) + g
√

(c(x− b))2 + d2 (3.1)

suits many practical applications where two financial variables are required to unlock most of the callability value.
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Figure 1: The hyperbolic exercise boundary given by equation (3.1).

The typical shapes of its zero-level contour line (which is
the exercise boundary) are shown in figure 1. As an exam-
ple for the use of this functional form, consider the calla-
bility of a payer’s Bermudan swaption in a multi-factor
model, and consider x to represent the front Libor and y
as the coterminal swap rate. In the limit of both x and y
very large, it is clearly beneficial to exercise as soon as
possible, whence E ought to be large in this limit. In con-
trast, when both are very low, we should not exercise, and
E must be negative in this limit. When x is small, and y
is moderate but larger than the fixed rate, exercise should
not be done now but is likely to become optimal at a later
stage. When y is very small, exercise should be avoided,
even if x is large. This simple analysis already suggests
that −Ehyperbolic with a > 0, b > 0, c < 0, g > 0 might be
a good choice, and empirical tests support that this indeed
works very well.
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4 The full algorithm

The key stages of the exercise boundary optimization method are:-

Step 1. Decide on a functional form for the exercise decision functions E for all exercise time horizons. Note that dif-
ferent functions may need to be chosen for different time horizons if the product exhibits strong inhomogeneity
in its features over time. Also note that the exercise domain may not be singly connected whence the implicit
formulation of the exercise domain in the form of E(x) > 0 is generally preferable over explicit specifications
of the boundary. A simple example for this is a multi-callable best-of option paying (max(S1, S2)−K)+.

Step 2. Generation of the n-path training set. The only values that need to be stored are each path’s continuation values,
cancellation values, and exercise decision function argument values for each exercise decision horizon. Note
that for complex models, with contemporary computer’s typical memory capacities, this reduction in storage
requirements is typically necessary in order to be able to store all data in memory. Also note that the reduction
of required memory typically leads to significant speed-up since cache memory access speed and main memory
access speed differ considerably.

Step 3. In reverse chronological order, optimize the discretely sampled objective function (2.11) for each exercise time
horizon in turn. Note that the objective function, at a high resolution level, appears to be piecewise constant in its
parameters whence an optimization method ought to be used that can cope with the fact that the function appears
to change only at scales compatible with the granularity of the Monte Carlo sampling. One of the simplest
methods that allows for a scale change during the optimization is the Downhill-Simplex algorithm [PTVF92].
For the case that λ is one-dimensional, Golden Section Search [PTVF92] or outright sorting also works well.

Step 4. Using the exercise strategy now defined by the fully specified exercise decision functions established in stage
3, re-evaluate the callable financial contract by an independent N -path Monte Carlo simulation with N >> n.
In practice, N ∼ 4 · n has been found to be a good ratio when low discrepancy numbers are used throughout.

The final result, by virtue of the inequality (2.10), is of course biased low since the valuation based on an optimized
(implicit) functional approximation can only be as good as the exercise domain boundary is represented in the approx-
imation. It can be shown readily, though, that for a small difference ε (defined in any suitable way) between the truly
optimal exercise boundary and the one used in the numerical approximation, the difference between the numerically
obtained value and the truly optimal value scales like the second order in ε, i.e. like O(ε2) whence small differences
tend to have negligible influence on the calculation. Another mitigating factor with respect to the exercise boundary
representation is that any mismatches only contribute proportional to the probablity of actually reaching this part of
state space, i.e. the exercise boundary only need be matched well were probability densities are high. It is these fea-
tures of second-order-only exercise domain matching error propagation and the fact that the boundary only needs to
be represented accurately in the centre of the state vector distribution that makes this method so effective in practice.
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