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1 Why model dividends?

Why model dividends?

Hedge behaviour: response of option prices (=volatility) to spot moves.

Vanilla price continuity along adjusted strike line:
calendar arbitrage across ex-dividend dates.

Non-vanilla prices are a�ected by the dividend model. There's a lot of
literature on barrier options with discrete dividends.

Choice of dividend model a�ects wings of (Black) volatility surface!

A good part of the literature on the e�ect of dividends on non-vanillas ignores the e�ect of

calibration to the same (Black) volatility surface.
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2 Common dividend models

Common dividend modelling approaches

For simplicity, we assume dividends are all intended to be absolute and dis-
crete, and interest rates are zero1.

1 Escrowed dividends [HJ88]. For some (pricing) horizon T , the spot S(t)
is a log-normal variate plus all dividends yet to be paid until T :

dS̃ = σS̃dW S(t) = S̃(t) +
∑

t≤τi<T

Di (3.1)

2 Log-normal minus already paid dividends [Bla75]. The spot is a log-
normal variate minus all dividends already paid:

dS̃ = σS̃dW S(t) = S̃(t)−
∑

0≤τi<t

Di (3.2)

1Non-zero (deterministic) interest rates, dividend yields, repo rates, and proportional
dividends can all be included by minor modi�cations and/or transformations.
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2 Common dividend models

3 Piecewise log-normal di�usion. The spot is log-normal di�usion in-
between dividends and jumps at the ex-dividend date:

dS = σSdW +
∑
i

Di · δ(t − τi )dt (3.3)

4 Mixing ideas of 1 and 2 to emulate 3 (at least near the money) [BV02]:

dX̃ = σX̃dW S(t) = [S0 − Dnear(t)] · X̃ − Dfar(t) (3.4)

with

Dnear(t) =
∑

0≤τi<t

(
1− τi

T

)
· Di Dfar(t) =

∑
0≤τi<t

τi
T
· Di (3.5)

5 Proportional dividends. Last but not least:

dS = σSdW +
∑
i

Di ·
S

S0
· δ(t − τi )dt (3.6)

What do these approaches look like?
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2 Common dividend models

1 Escrowed dividends:
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Top to bottom: 99%, 85%, 50%, 15%, and 1% quantile curves (single Karhunen-Loeve factor paths).
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2 Common dividend models

2 Log-normal minus paid dividends:
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Top to bottom: 99%, 85%, 50%, 15%, and 1% quantile curves (single Karhunen-Loeve factor paths).

Peter Jäckel (VTB Capital) Real cash dividends October 2015 7 / 93

2 Common dividend models

3 Piecewise log-normal di�usion:
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2 Common dividend models

4 Mixing ideas of 1 and 2 to emulate 3 [BV02]:
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Top to bottom: 99%, 85%, 50%, 15%, and 1% quantile curves (single Karhunen-Loeve factor paths).
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2 Common dividend models

5 Proportional dividends:
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2 Common dividend models

Ideally, we want piecewise log-normal di�usion, adjusted to remain positive:
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positivity adjusted

Top to bottom: 99%, 85%, 50%, 15%, and 1% quantile curves (single Karhunen-Loeve factor paths).
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2 Common dividend models and their drawbacks

Drawbacks of the respective approaches

Subtracting from the spot lowers e�ective instantaneous volatility at the
front (small t).

A�ects: 1 and 4

Reducing the subtraction as t → T raises e�ective instantaneous volatility
at the back (large t).

A�ects: 1

Short term dividends should be absolute cash (no measurable e�ective
proportional component).

A�ects: 4 and 5
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2 Common dividend models and their drawbacks

Short term put options for low strikes (at the escrow amount) should
not have zero value.

A�ects: 1

Put options at zero strike should have zero value.

A�ects: 2 and 3 and 4

There are legal restrictions on the maximum dividend any company
can pay depending on their equity.

Dividends cannot bankrupt a company or deplete equity to zero.

A�ects: 1 and 2 and 3 and 4

All common (cash) dividend models violate economic fundamentals.
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2 Common dividend models and their drawbacks

V. Frishling [Fri02]:

�The answer to the question of which model re�ects reality better and provides consistent

pricing across a range of options is almost self-evident. It seems that the third model

is more in agreement with the actual evolution of the price process and should be used,

particularly if pricing of exotics is required. It should be pointed out that the three

models compared in this note are well known, although the second one, which models

the accumu- lation process, is less familiar than the others. However, no source known

to us analyses the di�erences between these models or recommends one in preference to

another. Moreover, it appears that some commercial systems use or at least provide

these models quite arbitrarily and inconsistently, thus leading to potentially dangerous

mispricing and mishedging of the portfo- lios. We have no doubt that many practitioners

and quantitative analysts grappled with this problem at some time in their careers and

may have arrived at conclusions similar to those outlined. If this article makes the quan-

titative analyst community more aware of these pitfalls, and helps them to price their

positions correctly, then it will have ful�lled its purpose.�
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3 Cash dividends as they really happen

UK Companies Act 20062

830. Distributions to be made only out of pro�ts available for the purpose

(1) A company may only make a distribution out of pro�ts available for the purpose.

(2) A company's pro�ts available for distribution are its accumulated, realised pro�ts, so far
as not previously utilised by distribution or capitalisation, less its accumulated, realised
losses, so far as not previously written o� in a reduction or reorganisation of capital
duly made.

The details of the legislation are intricate and vary by jurisdiction.

It is fairly safe to assume as a general guideline that a dividend cannot
exceed a certain percentage of the current equity price.

In a simplistic interpretation, this means if the spot drops below a certain
threshold θ, the dividend must be reduced.

Even if this is not exactly in line with actual legislation, it serves as an
excellent, realistic, and economically justi�able dividend model.

2
Dividends belong to the category �distributions�.
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3 Cash dividends as they really happen Putting this into a model

Assume the maximum dividend-to-spot ratio is 50%, i.e., θ = 2 · D.

D θ

D

S

S (identity function)

Cash dividend level D
Ratio-capped dividend
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3 Cash dividends as they really happen Piecewise a�ne ex-div spot function

Now for the details. We use the following simple dividend process model:-

De�ne the cash dividend forecast D as the drop in the forward curve across
the ex-dividend date T as seen out of today.

D := F (T−)︸ ︷︷ ︸
F−

−F (T+)︸ ︷︷ ︸
F+

(4.1)

De�ne the jump of the spot across the ex-dividend date from S− := S(T−)
to S+ := S(T+) given by a chosen transition function

S+ = f (S−) . (4.2)

As a balanced choice between matching the reality of dividend cuts for
collapsed spots, and simplicity, we choose a continuous piecewise a�ne
function f (·) that comprises:

an outright downwards jump by D∗ ≈ D, i.e., an actual cash dividend,

unless the spot S is below some threshold θ ≈ 2D,

with f (0) = 0.
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3 Cash dividends as they really happen Piecewise a�ne ex-div spot function

This gives us

S+ = f (S−) =


(
1− D∗

θ

)
· S− if S− ≤ θ

S− − D∗ if S− > θ
(4.3)

We observe that, unless volatility is zero, we must have

D∗ 6= D (4.4)

but very, very, very close, especially for near-dated dividends.

NOTE that the above piecewise a�ne modelling is not to be confused
with what is sometimes referred to as a�ne dividends.

Those �a�ne dividends� are in fact a split into absolute and proportional
parts of the dividend.

We will add proportional contributions soon.
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3 Cash dividends as they really happen Piecewise a�ne ex-div spot function

Schematically:

S−

−D
−D∗

θ

S− (identity function)

S− − D (cash div)

S− − D∗

f (S−)
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3 Cash dividends as they really happen Piecewise a�ne ex-div spot function

The actual di�erence between D and D∗ is tiny for real data.

For T = 1, σATF = 15%, F− = 100, D = 5, we have (smile data to follow):

D∗ ≈ D · (1 + 10−11)

S−

F−−D θ

S− (identity function)

S− − D (cash div)

S− − D∗

f (S−)

Peter Jäckel (VTB Capital) Real cash dividends October 2015 20 / 93



3 Cash dividends as they really happen Finding D∗

Assuming θ is given, D∗ is uniquely determined by (4.1).
Rewriting the spot transition function f (·) given in (4.3):

f (S−) = S− − D∗ +
D∗

θ
(θ − S−)+ (4.5)

and taking expecations, we obtain

F+ − F− = −D = −D∗ +
D∗

θ
· p− (θ) , (4.6)

and thus

D∗ =
D

1− p−(θ)

θ

(4.7)

where p− (θ) is the price of a T−-expiry put option struck at θ.

We obtain D∗ analytically from D and the smile.
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3 Cash dividends as they really happen Price transition rules

The option price transition rules for puts and calls pre- [p−(K ) and c−(K )]
and post-dividend [p+(K ) and c+(K )] can be readily derived:-

p+(S+) =


(
1− D∗

θ

)
· p−(S−) if S− ≤ θ

p−(S−)− D∗

θ · p−(θ) if S− > θ

(4.8)

c+(S+) =


(
1− D∗

θ

)
· c−(S−) + D∗

θ · c−(θ) if S− ≤ θ

c−(S−) if S− > θ

(4.9)

where c− (K ) is the price of a T−-call struck at K .
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3 Cash dividends as they really happen Including a proportional part

If we include a proportional dividend component δ such that

F+ = (1− δ) · F− − D , (4.10)

we have the spot transition rule

S+ = f (S−) =


(
(1− δ)− D∗

θ

)
· S− if S− ≤ θ

(1− δ) · S− − D∗ if S− > θ

.

(4.11)
and equation (4.7) for D∗ still holds. The price transitions become:-

p+(S+) =


(
(1− δ)− D∗

θ

)
· p−(S−) if S− ≤ θ

(1− δ) · p−(S−)− D∗

θ · p−(θ) if S− > θ
(4.12)

c+(S+) =


(
(1− δ)− D∗

θ

)
· c−(S−) + D∗

θ · c−(θ) if S− ≤ θ

(1− δ) · c−(S−) if S− > θ
(4.13)
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3 Cash dividends as they really happen The smile before and after Actual implied volatility smile data

As before, T = 1, F− = 100, D = 5 (all volatilities are Black):-
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3 Cash dividends as they really happen The smile before and after Actual implied volatility smile data

Near the money:-
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3 Cash dividends as they really happen The smile before and after Actual implied volatility smile data

Near zero:-
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3 Cash dividends as they really happen The smile before and after Actual implied volatility smile data

Near D = 5, it's a bend not a kink:-

44.50%
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3 Cash dividends as they really happen The smile before and after The risk-neutral density

The risk-neutral density does what we expect, a macroscopic translation:-
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3 Cash dividends as they really happen The smile before and after The risk-neutral density

At D = 5 it incurs an upwards shift due to the compression towards zero:-
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3 Cash dividends as they really happen The smile before and after
Comparison of dividend models for �at

smile

Now: T− ≡ T1 = 0.75, Black σ̂(T−) = 40% for all strikes, F (T−) = 100, D(T1) = 5
For the escrowed dividend model, assume: T2 = 1.75, D(T2) = 5, T = 2.
We have at T1:
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4 Cash dividends in (not) SABR?

Parametric volatility with cash dividends

Incorporating this translation mechanism into any simple parametric formula
is inherently doomed.

No matter what smart analytics are being put in place, somewhere, it'll creak
at the seams, foiling all the �clever� e�ort.

Life isn't simple.
Cars aren't simple, but perfectly workable engineering problems.
Why should dividends be simple to the point of being a one line formula?

A. Lipton [2006] :

�The hunt for closed form solutions is ultimately nothing
but the pursuit of fool's gold.�

The days of simple formulae are gone.

The age of engineering solutions has come.
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4 Cash dividends in (not) SABR?

In the �DHI framework� [JAL14], we introduced the construction of a
parametric implied volatility surface on a sparse lattice in 2D.

This approach is robust and fast, and gives us full �exibility and control
over any further modelling aspects.

Incorporating a di�erent dividend model is almost trivial.

Here is why:

As we propagate in time, it is necessary to resize the 2D lattice every now
and then to dimensions of local relevance at the given time horizon.

We refer to a sequence of steps with constant lattice layout as a box.
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4 Cash dividends in (not) SABR?

Lattice boxes
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4 Cash dividends in (not) SABR? Transfer via Implied Volatility

At box transition points, we need to redistribute the discrete probability
masses from the previous lattice to the new lattice.

This is not the same task as interpolating a continuous value function
such as a contract price or a payo�!

The conditions for a meaningful transfer are subtle.

Conventional concepts of �interpolation� are simply not applicable to the
probability translation problem.

The most important requirement is: continuity of option prices!

We use an arbitrage-free implied volatility interpolator [Jäc14] constructed
from the previous lattice nodes to infer the distribution on the new lattice.
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4 Cash dividends in (not) SABR? Transfer via Implied Volatility From prices back to probabilities

First, we compute out-of-the money option prices {vi}, i = 1...nz , struck
at the new lattice's spot levels, using the interpolator's implied volatilities!

Dropping the leftmost and rightmost nodes, we bootstrap a set of discrete
z-marginal probabilities p̃′(z ′i ) such that

v ′k =
imin(ez

′
k )∑

i=1
p̃′(z ′i ) · (ez

′
k − e

z ′i ) for 1 < k < nz+1
2

v ′k =
nz∑

i=imin(ez
′
k )

p̃′(z ′i ) · (ez
′
i − e

z ′k ) for nz+1
2 < k < nz

p̃′(z ′nz+1
2

) = 1−
∑

i 6= nz+1
2

p̃′(z ′i )

(5.1)

where we have assumed that nz is odd and greater than four.
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4 Cash dividends in (not) SABR? Transfer via Implied Volatility From prices back to probabilities

We then redistribute p′i in the y direction by building a two-dimensional
interpolator Q(z , y) of discrete probabilities from p̃(zi , yj), i.e., from the
data of the earlier box's lattice.

We use this two-dimensional interpolator for the purpose of interpolation
in the y -direction, conditional on a given z-level, and so to distribute the
z-marginal probability mass at some level zi in the y -direction.

After �ooring and conditioning, the discrete Green's function on the new
lattice is given by

p̃(z ′i , y
′
j ) = p̃′(zi ) ·

(
Q(z ′i , y

′
j )
)

+∑
l

(
Q(z ′i , y

′
l )
)

+

. (5.2)
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4 Cash dividends in (not) SABR? Transfer via Implied Volatility From prices back to probabilities

This procedure is a generic methodology to redistribute discrete probabilities
from one set of discrete nodes to another, whilst preserving the quantities
that are of most importance in our context, namely:-

the sum of all probabilities

the expectation of the underlying, i.e., the forward,

the prices of vanilla options on the new lattice's nodes as implied by the
earlier lattice's probability distribution.

This method of translating a set of discrete probabilities from one

lattice discretisation to another is in its own right a subject that is

little documented in the literature and can be of use in other contexts.

Peter Jäckel (VTB Capital) Real cash dividends October 2015 37 / 93

4 Cash dividends in (not) SABR? Transfer via Implied Volatility What does this look like?

For the DHI parameters � � � � �

� � ��� ��� ����

, at T = 1,

the implied volatility transition nodes are:
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4 Cash dividends in (not) SABR? Transfer via Implied Volatility What does this look like?

The discrete probabilities before
the transition are:
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4 Cash dividends in (not) SABR? Transfer via Implied Volatility What does this look like?

These translate into:
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4 Cash dividends in (not) SABR? Piecewise a�ne dividends in DHI

Within the DHI framework, we can include this piecewise a�ne

dividend model with ease using the techniques developed for

box transitions!

We only need a box transition, with or without change of the lattice layout.

We populate the probability levels at T+ from option prices struck
at the T+ lattice node levels, via the price transition rules (4.12)
and (4.13).

This of course requires option prices at T− at strikes at which there are
no lattice nodes. For this, we have the implied volatility interpolator

at T− as at any other box transition.

All else is already in place! And not a shred of arbitrage!

Between dividend dates, the dynamic evolution is unchanged.
We only need the probability transitions at the dividend date.

This is another example where the probability transfer method via trans-
formation to an implied volatility smile, and back, is of great use.

Peter Jäckel (VTB Capital) Real cash dividends October 2015 41 / 93

5 Cash dividends in local volatility Initial considerations

When applying the piecewise a�ne dividend process modelling ideas to the
local volatility framework, we have two major issues to address:-

1 Local versus Global method of �calibration� of local volatility.

More about this later, time permitting.

2 In �nite di�erencing:

Node-to-node transfer probability assignment across dividend events.

We need this for the backward induction of (de�ated) net present values.

We �rst address 2 . We discuss two methods how this can be done.

In all approaches, we keep the x-coordinates of the lattice nodes constant
between ex-dividend times. These relate to strikes in spot space via

Ki (T ) = F (T ) · exi (T ) . (6.1)
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5 Cash dividends in local volatility Transfer probabilities across dividends One-to-one

Approach #1: one-to-one node transitions

Intuitively appealing, we connect via

Ki (T+) = f (Ki (T−))

xi (T+) = ξ (xi (T−))
(6.2)

with

ξ(x) := ln

(
f (F− · ex )

F+

)
(6.3)

where we dropped the dependence of f (·) on D∗(T−) and θ(T−).

For any (single-boxed) �nite di�erencing calculation from 0 to some time horizon T , we

can choose the lattice geometry x(T ∗) at one time horizon T ∗, typically in the interval

(0,T ], and the geometry in all other inter-dividend intervals is determined by a chained

iteration of equation (6.2). Since f (·) is guaranteed to be monotonic and invertible, we

can construct the lattices in both directions from T ∗.
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5 Cash dividends in local volatility Transfer probabilities across dividends One-to-one

T = 1, σ̂(θ) = 50%, F− = 100:

−2 −1 0 1 2

−2

−1

0

1

2

x

(identity function)

ξ(x) for D = 20.0
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5 Cash dividends in local volatility Transfer probabilities across dividends One-to-one

Across a dividend transition, going forward in time:-

Proportional dividends have no impact on a logarithmic lattice layout.

Cash dividends widen a logarithmic lattice in both directions.

Assuming the forward is met exactly to T− by the probabilities pi (which
don't change in the transition) on the nodes situated at T− at the locations
xi (T−) by

F− =
∑
i

pi · Ki (T−) with Ki (T−) = F− · exi (T−) , (6.4)

we preserve the relationship D = (1− δ) · F− − F+ in (4.10) when

F+ =
∑
i

pi · Ki (T+)

=
∑
i

pi · f (Ki (T−))
(6.5)
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5 Cash dividends in local volatility Transfer probabilities across dividends One-to-one

Expanding f (·) via (4.11), we obtain

F+ =
∑
i

pi ·
(

(1− δ) · Ki (T−)− D∗ ·
[
1−

(
1− Ki (T−)

θ

)
+

])

F+ = (1− δ) · F− − D∗ ·
∑
i

pi ·
[
1−

(
1− Ki (T−)

θ

)
+

] (6.6)

and thus the analytical calibration of D∗ on the lattice:

D∗ =
D∑

i pi ·min
(
1, Ki (T−)

θ

)
(6.7)
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5 Cash dividends in local volatility Transfer probabilities across dividends One-to-one

D = 3, σ̂(θ) = 50%, S0 = 100:

0 0.5 1 1.5 2
−4

−3

−2

−1

0

1

2

Tex Tex Tex Tex

t

Logarithmic lattice evolution with approach #1: one-to-one node transitions.
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5 Cash dividends in local volatility Transfer probabilities across dividends Probability re-distribution

Approach #2: Probability re-distribution

We lay out the lattice to propagate from T+ to T+ + ∆T

any way we see �t

for the target horizon T+ + ∆T , e.g., asymmetrically widening according to
the respective skew and smile.

As usual (laying out a lattice governed by the later time horizons), since we
assume the lattice in logarithmic coordinates to be constant when there are
no cash dividends, we set

xi (T+) := xi (T+ + ∆T ) . (6.8)

This means the lattice is not in line with the end-of-dividend-jump locations
x̌i (T+) we de�ne as

x̌i (T+) := ξ (xi (T−)) . (6.9)
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5 Cash dividends in local volatility Transfer probabilities across dividends Probability re-distribution

T− = 0.036, D ≈ 3.86% · F (T−), δ = 0 T− = 1.036, D ≈ 3.99% · F (T−), δ = 0

T− T+ T+ + ∆T

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

x

T− T+ T+ + ∆T

−3

−2

−1

0

1

x

Schematic of the jump from x(T−) to the unoccupied locations x̌(T+). Green arrows: dividend
jump. Blue lines: independently chosen lattice node levels from T+ to T+ + ∆T .
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5 Cash dividends in local volatility Transfer probabilities across dividends Probability re-distribution

Instead of jumping from xi (T−) to x̌i (T+),

we split the probabilities over the nearest lattice nodes i` to the left and ir
to the right of xi (T+ + ∆T )

with weights wi and (1− wi )

such that the probability mass pi arrives, in spot coordinates,

at the unattainable location f (Ki (T−))

in expectation.
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5 Cash dividends in local volatility Transfer probabilities across dividends Probability re-distribution

pi
Ki

Kir

Ki`

(1− wi )

wi

f (Ki )

T− T+

Schematic of probability split during the ex-dividend jump on a spot-�xed lattice layout.
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5 Cash dividends in local volatility Transfer probabilities across dividends Probability re-distribution

We do not necessarily have to widen the lattice at the lower end �

we can simply absorb jumps beyond the bottom node!

This is merely a small modi�cation to our dividend process on the lattice.

The cash dividend is cut down more rapidly when f (S−) < K1 where K1

is the lowest lattice node.

Unless a lattice is laid out for very short maturities, K1 is typically orders
of magnitude smaller than the forward.
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5 Cash dividends in local volatility Transfer probabilities across dividends Probability re-distribution

T = 2, σ̂ = 50%, F− = 100, D∗ = 5, θ = 2D∗:

D∗ θ

D∗

S−

∆S

S− (identity function)

D∗

S− − f (S−)

De�ective = S− −max(K1, f (S−))

K1

ln(K1/F+)
σ̂
√
T

=−5.5
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5 Cash dividends in local volatility Transfer probabilities across dividends Probability re-distribution

This of course means that we must adjust how we compute D∗ !

Putting this together:

K ∗i (D∗) := max
(
K1(T+), f (Ki (T−))

)
(6.10)

i` = max
(
j ≤ n − 1

∣∣∣ Kj(T+) ≤ K ∗i (D∗)
)

(6.11)

ir = i` + 1 (6.12)

wi =
Kir (T+)− K ∗i (D∗)

Kir (T+)− Ki`(T+)
. (6.13)

In order to compute D∗, we demand the preservation of the forward F+ as
the probability-weighted average over the lattice nodes:

F+ =
∑
i

pi · K ∗i (D∗) (6.14)

Note: the right hand side is continuous and piecewise a�ne in D∗.
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5 Cash dividends in local volatility Transfer probabilities across dividends Probability re-distribution

D∗ is the root of
g(D∗) := 1−

∑
i

pi · K ∗i (D∗)/F+ . (6.15)

Here are two examples:

T− = 0.036, D ≈ 3.86% · F (T−), δ = 0 T− = 1.036, D ≈ 3.99% · F (T−), δ = 0

0.0E+00

5.0E-10

1.0E-09

1.5E-09

2.0E-09

2.5E-09

3.0E-09

3.5E-09

4.0E-09

4.5E-09

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2
D*/ D

g(D*)

g(D*) after subtraction of secant

[right ordinate]
0.0E+00

2.0E-08

4.0E-08

6.0E-08

8.0E-08

1.0E-07

1.2E-07

1.4E-07

1.6E-07

1.8E-07

2.0E-07

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2
D*/ D

g(D*)

g(D*) after subtraction of secant

[right ordinate]

σ̂(F−,T−) ≈ 26%, σ̂(θ,T−) ≈ 39% σ̂(F−,T−) ≈ 29%, σ̂(θ,T−) ≈ 55%

31 nodes, ∼5.35 ATF std. deviations 31 nodes, ∼5.35 ATF std. deviations

D∗
/D − 1 ≡ 0 D∗

/D − 1 ≈ 1.2E-6
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5 Cash dividends in local volatility Transfer probabilities across dividends Probability re-distribution

T− = 0.036, D ≈ 3.86% · F (T−), δ = 0 T− = 1.036, D ≈ 3.99% · F (T−), δ = 0

T− T+ T+ + ∆T

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

x

T− T+ T+ + ∆T

−3

−2

−1

0

1

x

Schematic of the jump-and-split from x(T−) to x(T+). Orange dashed arrow: dividend jump in

expectation. Green arrows: split jump. Blue lines: lattice levels from T+ to T+ + ∆T .
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5 Cash dividends in local volatility Transfer probabilities across dividends Probability re-distribution

Remark 6.1. The probability splitting explained here in a forward induction
setting is exactly equivalent to linear interpolation of function values with
weights wi and (1− wi ) in backward induction calculations.

Remark 6.2. The splitting of probabilities has an impact on the net local
variance that is required by the subsequent di�usion step to match the target
probabilities at T+ + ∆T , though this e�ect will only apply to the time step
immediately following the ex-dividend event.

In other words, the local variance immediately following an ex-dividend
event is a�ected by the spatially discretised dividend model we choose.

This brings us to the choice of

Local versus Global �calibration� of local volatility

(time permitting).
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6 Local variance calibration Preliminaries De�nition of the model

Calibrating local variance coe�cients

De�ne the normalized spot process X (t)

X (t) := S(t)/F (t) (7.1)

where S(t) is the observable spot at time t and F (t) is the forward as seen
at time t0 = 0 for expiry t. X (t) is a martingale.

In the absence of cash dividends, the local volatility model is then given by
the stochastic di�erential equation

dX (t) = σ(X (t), t)dW . (7.2)

The time-continuous and space-continuous in�nitesimal generator of this
process has the form

L(X , t) = 1
2v(X , t)∂2X (7.3)

with the local variance v(X , t) obviously de�ned as v(X , t) := σ2(X , t).
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6 Local variance calibration Spatial discretisation

Still in continuous time,

L := a matrix comprising a spatial discretisation of L
that

preserves positivity of probabilities

ensures that the process X is a martingale under L.

It follows that:-

the top and bottom row of L contain only zeros since the lowest and
highest nodes must be absorbing for L to represent a martingale in X .

All rows of L must sum up to zero.

L must have only non-negative elements away from the diagonal (as is the
case for all spatially discrete Markov generators).

In fact, with X̂ being the vector of lattice node levels, we must have

L · X̂ = 0 (7.4)

for L to be a local martingale in X in all lattice node levels.
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6 Local variance calibration Spatial discretisation

For the sake of e�cient spanning of spot space, we now change spatial
coordinates to

x := ln(X ) . (7.5)

In spatially continuous calculations, this transformation introduces a drift
term of magnitude −1

2v in order to maintain the martingale condition, i.e.,
we obtain

L(x , t) = 1
2v
(
∂2x − ∂x

)
. (7.6)

However, in discrete space,

L(x , t) 6= 1
2v

(
∂̂2x − ∂̂x

)
(7.7)

where ∂̂x symbolically represents suitably chosen �nite di�erencing stencils.

We mention that conditions for X to be an exact martingale, not just in the limit of
∆x → 0, were already given in [ABR97, section 3.3 �Fitting of Asset Forward�]!
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6 Local variance calibration Spatial discretisation

Conveniently, irrespective of the chosen �nite di�erencing stencils, we can
always put L into the form

L = 1
2 · V ·M (7.8)

where V is a diagonal matrix of the local variances {v1(t), v2(t), . . . , vn(t)}
with n being the number of spatial nodes.

M is a matrix of coe�cients that are determined by:-

the spatial discretisation

the requirement that each row comprises a �nite di�erencing stencil for
the second derivative in x , which we denote as ∂̂2x

X (not x) is a martingale under L and thus under M, i.e.,

M · X̂ = 0 . (7.9)

We meet (7.9) by adding advection using a �nite di�erencing stencil ∂̂x .

This is the exact application of It	o's lemma to spatially discrete Markov chains.
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6 Local variance calibration Log-spot di�usion stencil preserving the spot martingale

When the lattice is homogeneous in x with

∆ := xi − xi−1 , (7.10)

we can set

M =



0 0 0 · · · 0
a b c 0 ·
0 a b c 0 ·
· · · ·
· 0 a b c 0
· 0 a b c
0 · · · 0 0 0


, (7.11)

with

a =
2

∆2
· 1

1 + e
−∆

, b = − 2

∆2
, c =

2

∆2
· 1

1 + e
∆

(7.12)

so that

a + b + c = 0 and a · e−∆ + b + c · e∆ = 0 . (7.13)
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6 Local variance calibration Log-spot di�usion stencil preserving the spot martingale

Row #i of M evaluates ∂2x at location xi accurate to order o(∆x2).

X is a martingale under M since

M · X̂ = 0 .

M is a Metzler matrix.

L = 1
2 · V ·M is stable and positivity preserving in the spatially discrete

forward Kolmogorov equation

∂tp = L∗p (7.14)

in continuous time exactly when

all local variance coe�cients are non-negative.

All of the above is exact, even when the lattice is ultra-sparse !

No need to have many nodes only because we have local volatility.
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6 Local variance calibration in discrete time

The only known (two time) scheme that is guaranteed to preserve positivity
of probabilities for any ∆t ≥ 0 is the �rst order fully implicit scheme

p(t + ∆t) = (1−∆t · L∗)−1 · p(t) . (7.15)

Since L is (in exact arithmetic) a perfect local martingale, this scheme3 gives
us an exact preservation of the X -martingale condition in discrete time.

Transferring the fully implicit operation to the left hand side,

(1−∆t · L∗) · p(t + ∆t) = p(t) (7.16)

and using L = 1
2 · V ·M, we can turn this into

M> · V · p(t + ∆t) =
2

∆t
· [p(t + ∆t)− p(t)] (7.17)

3like all Padé schemes
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6 Local variance calibration in discrete time

If we already have the discrete Arrow-Debreu probabilities p(t), then we can
now back out the local variance coe�cients v !

Since V ≡ diag(v) , we can rewrite

V · p(t + ∆t) ≡ P · v (7.18)

with
P := diag(p(t + ∆t)) . (7.19)

Further denoting
∆p := p(t + ∆t)− p(t) (7.20)

we now have

M> · P · v =
2

∆t
·∆p (7.21)

which is a linear system for the local variance vector v.
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6 Local variance calibration in discrete time

Due to the structure of M, this linear system is twofold over-determined in
the coe�cients v2, . . . , vn−1 and provides no equations for v1 and vn.

This is the result of the fact that on the �rst and on the last node we have absorption

and thus v1 and vn are unde�ned by construction.

The system has a solution exactly if pi (t + ∆t) 6= 0 and∑
i

pi (t) =
∑
i

pi (t + ∆t) [probability preservation] (7.22)∑
i

X̂i · pi (t) =
∑
i

X̂i · pi (t + ∆t) [forward preservation] (7.23)

both of which we had guaranteed from the start.

We therefore drop the top and bottom equations and indicate this by a tilde.

With this in mind, we de�ne

ỹ := M̃>
−1
· 2

∆t
·∆p̃ (7.24)

which always exists due to the well-conditioned special structure of M̃.
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6 Local variance calibration in discrete time

We now only have to solve
P̃ · ṽ = ỹ . (7.25)

The matrix P̃ is diagonal, so this should be trivial, right?

Alas,

P̃ can (and sometimes will) have zero entries on the diagonal!

What's more, we can (and sometimes will) end up with negative vi .

We can resolve the underdetermined system with Lagrange multipliers and
an objective of minimum variation of neighbouring elements of v.

We also need the constraint vi ≥ 0.
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6 Local variance calibration in discrete time

In practice, this is equivalent to the following very simple logic:

1 Solve for all coe�cients vi for which P̃ii 6= 0.

2 Linearly interpolate between the so obtained vi (over their location in
logarithmic coordinates) to resolve all vj for which P̃jj = 0.

3 Set
v1 := v2

vn := vn−1
(7.26)

4 Floor all vi at zero.
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6 Local variance calibration in discrete time Local versus Global

Now that we have computed the local variance coe�cients, we satisfy the
forward Kolmogorov equation

p(t + ∆t) = (1−∆t · L∗)−1 · p(t) . (7.15)

Unless we had to �oor local variances!!!

In that case, vanilla options at t + ∆t no longer meet the input volatility
surface, and as a consequence, if we simply proceed as above, not at t+2∆t
either, and so on!

The error will gradually (=slowly) average out.

Any additional later �ooring will just compound the problem.

Note that this problem is implicitly part of any �local volatility� cal-
culation that uses any form of (local) analytical formulae.

Peter Jäckel (VTB Capital) Real cash dividends October 2015 69 / 93

6 Local variance calibration in discrete time with global compensation

We can, however, compensate to repair the damage done by the �oored
local variances (to some extent)!

Once we have the local variances for the time step from t to t + ∆t, and so
populate L(t, t + ∆t), we numerically compute

p̂(t + ∆t) := [1−∆t · L∗(t, t + ∆t)]−1 · p(t) . (7.27)

We then use

p̂(t + ∆t) instead of p(t + ∆t)

for the calculation of v(t + ∆t, t + 2∆t).

Wherever local variances from t + ∆t to t + 2∆t would have been positive
without compensation, we �nd that those immediately following �oored local
variances are depressed if compensation is invoked.

This is intuitively right: �ooring is akin to raising the local variance, so to
compensate, subsequent local variance needs to be reduced.
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6 Local variance calibration in discrete time with global compensation
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Implied volatility surface as a heat map. We used 31 nodes and an asymmetric lattice
layout to cater for smile and skew.
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6 Local variance calibration in discrete time with global compensation
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Discrete probabilities bootstrapped from the data in the previous �gure on a logarithmic
scale. Blank regions correspond to zero-�oored probabilities.
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6 Local variance calibration in discrete time with global compensation
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'Signed' local volatility de�ned as sign(v) ·
√
|v| (where v is the un�oored local variance)

resulting from the implied volatility surface (un�oored data to enhance visualisation).
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6 Local variance calibration in discrete time with global compensation

 0  0.2  0.4  0.6  0.8  1T

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

x

-100%

-50%

0%

50%

100%

150%

200%

  intervals of identified negative local variances

  associated compensation intervals

  probability propagation lattice for compensation

'Signed' local volatility without compensation (un�oored data to enhance visualisation).
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6 Local variance calibration in discrete time with global compensation
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  probability propagation lattice for compensation

'Signed' local volatility with compensation (un�oored data to enhance visualisation).
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6 Local variance calibration in discrete time with global compensation
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  intervals of identified negative local variances

  associated compensation intervals

  probability propagation lattice for compensation

Residual in implied volatility without compensation when re-pricing vanilla options from
(�oored) local variances.
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6 Local variance calibration in discrete time with global compensation
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  intervals of identified negative local variances

  associated compensation intervals

  probability propagation lattice for compensation

Residual in implied volatility with compensation when re-pricing vanilla options from
(�oored) local variances.
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6 Local variance calibration in discrete time bootstrapping probabilities

In a similar vein, we ought to be careful how we compute the original target
probabilities p(T ) for the time stepping horizons.

We recognize two commonly used methods.

First, we de�ne the normalized vanilla option prices as follows:

C̃alli = Blackcall
(
Forward = 1, strike = K̃i ,T , σ̂ = σ̂surface(T , strike = F (T ) · K̃i )

)
P̃uti = Blackput

(
Forward = 1, strike = K̃i ,T , σ̂ = σ̂surface(T , strike = F (T ) · K̃i )

)
(7.28)

with
K̃i := e

xi . (7.29)

Peter Jäckel (VTB Capital) Real cash dividends October 2015 78 / 93



6 Local variance calibration in discrete time bootstrapping probabilities

1 Asymmetric Butter�ies (also known as Arrow-Debreu securities)

For all i except the lowest and the highest, we set the probability pi
according to the asymmetric butter�y price

pi =

(
ω(i−1) · (K̃i+1 − K̃i )− ω(i) · (K̃i+1 − K̃i−1) + ω(i+1) · (K̃i − K̃i−1)

(K̃i+1 − K̃i ) · (K̃i − K̃i−1)

)
+

(7.30)

where we use ω(·) for the precomputed normalized call prices when xi ≥ 0
and put prices otherwise.

At the top and bottom, we set

p1 =

(
P̃ut2

K̃2 − K̃1

)
+

pn =

(
C̃alln−1

K̃n − K̃n−1

)
+

. (7.31)
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6 Local variance calibration in discrete time bootstrapping probabilities

Crucially,

all probabilities are individually �oored at zero without any interaction.

As a consequence, any occurrences of �oored negative probabilities are
likely to lead to a violation of probability preservation∑

i

pi = 1 , (7.32)

and a violation of the forward condition∑
i

pi K̃i = 1 . (7.33)

Apart from the wing nodes, this method is equivalent to the calcula-
tion of �local volatility� from (local) analytical formulae, particularly
if derivatives are replaced with �nite di�erences of prices.
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6 Local variance calibration in discrete time bootstrapping probabilities

3 Telescopic bootstrapping

The top and bottom probabilities are also set according to (7.31). Then,
in sequence towards the centre,

pi =



 C̃alli−1 −
(∑n

j=i+1 pj K̃j − K̃i−1
∑n

j=i+1 pj

)
K̃i − K̃i−1


+

if xi ≥ 0

 P̃uti+1 −
(
K̃i+1

∑i−1
j=1 pj −

∑i−1
j=1 pj K̃j

)
K̃i+1 − K̃i


+

else ,

(7.34)
for all

i 6= k :=
n − 1

2

(assuming that n is always odd).
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6 Local variance calibration in discrete time bootstrapping probabilities

The central probability is �nally given by

pk = 1−
∑
j 6=k

pj . (7.35)

In this method, the calculation of any pi takes into account the
e�ect of �ooring any of its outer predecessors in the sequence!

The occurrence of the �ooring of a negative probability at some location
i > k + 1 (or i < k − 1) does by itself not lead to a violation of the
forward preservation condition (7.33) as long as pk+1 ≥ 0 before any
�ooring (respectively pk−1 ≥ 0).

Probability is always preserved!
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6 Local variance calibration in discrete time bootstrapping probabilities

Remark 7.1. The �ooring of probabilities in the telescopic bootstrapping
method is akin to a modi�cation of the input volatility smile such that it is
free of negative-butter�y-arbitrage and such that all data on the outside of
the locations of the �oored zero probabilities are preserved.

As long as pk−1 ≥ 0 and pk+1 ≥ 0 (where k is the central node), the forward
is also preserved.

The conditions pk−1 ≥ 0 and pk+1 ≥ 0 are in practice always preserved since
their violation would indicate negative butter�ies near the money which is
something the market just doesn't do.

We now show some examples. In the following diagrams, we use the nor-
malized log-spot ξ given by

ξ(t) := x

/{
|xmin(t)| if x < 0

|xmax(t)| else
. (7.36)
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Implied volatilities with arbitrage. To the left over normalized strike, to the right over
normalized log-strike ξ as de�ned in (7.36).
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6 Local variance calibration in discrete time bootstrapping probabilities
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Probabilities from telescopic bootstrapping.
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6 Local variance calibration in discrete time bootstrapping probabilities
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Absolute di�erence of implied volatilities computed from the probabilities backed out with
the asymmetric butter�y method with �ooring.
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Absolute di�erence of implied volatilities computed from the probabilities backed out with
the telescopic bootstrapping procedure.
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6 Conclusion

We reviewed commonly used dividend models.

We designed a dividend process around economic and legal reality.

We showed that this requires only the slightest adjustment to the assumed
cash lump sum dividend for most of the distribution.

We computed the adjusted cash dividend D∗ analytically.

We showed how this can be incorporated into a parametric implied volat-
ility surface generation model without arbitrage or approximations.
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6 Conclusion

We showed how this can be incorporated into a local volatility framework,
again without arbitrage or approximations4.

We showed how we can calibrate local variance coe�cients even in the
presence of cash dividends, without approximation or arbitrage.

The solution is not yet another analytical approximation for a local volat-
ility formula that is adjusted for dividends.

Instead, we simply solve the linear equations exactly.

This is e�cient, accurate, fast, and safe.

A key consideration for any local variance logic is that calibration must
always take a global view, both in the time and in the strike direction.

This applies not only to the case when cash dividends are present.

4We focussed on �nite di�erencing but this can also be done for Monte Carlo.
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