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1 Introduction Economic purpose of composite options GDR options

The economic purpose of composite options

Global Depository Receipts (GDR) are proxy securities that allow investors
in one currency market (ZZZ) to participate in shares that are domestic
in some other currency (YYY).

The value of the GDR is solely generated by the value of the underlying
share in its domestic currency YYY.

Hence, the ZZZ-denominated GDR has a value (in principle) given by sim-
ply multiplying the share's YYY-denominated value with the corresponding
FX rate, i.e.,

SGDR = S ·QYYYZZZ (2.1)

where QYYYZZZ represents the net present value of one YYY currency unit
in terms of ZZZ currency units.
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1 Introduction Economic purpose of composite options GDR options

Unsurprisingly, where GDRs trade on exchanges, there typically also are
options on those GDRs.

These options trade in their own right, but their link to the underlying
actual shares is given in terms of the composite option valuation formula

vcomposite = E
[
(S(T ) ·Q(T )−K)+

]
(2.2)

where we have dropped the FX subscript for brevity.

This option value is in terms of currency ZZZ.
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1 Introduction Economic purpose of composite options Commodities

Many commodities are quoted and sold worldwide in USD but produced
in various countries around the world.

Producers often wish to hedge their revenue streams

denominated in their own domestic currency.

This leads to composite put options that pay

(K − S(T ) ·Q(T ))+ . (2.3)

On occasions, producers are also prepared to give up the potential upside
of their revenues (denominated in their domestic currency) in return for a
reduction of the interest on loans granted to them.

This leads to composite call options:

(S(T ) ·Q(T )−K)+ . (2.4)
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1 Introduction Economic purpose of composite options Commodities

As a variation of this theme, we also see this with (typically monthly)
averaging features such as(

n∑
i=1

S(Ti) ·Q(Ti)/n−K

)
+

. (2.5)

Note that for the hedging of this latter case we may have access to options
on S(T ), and to options on the FX rate, but we have no options on the
composite underlying, unlike what we typically have with GDRs!

Particularly for the (semi-)analytical valuation of composite Asian options,
we'd ideally want to have a method for (semi-)analytical valuation of
vanilla options on the composite

S̃(T ) := S(T ) ·Q(T ) . (2.6)
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2 Multiplication becomes subtraction

Multiplication becomes subtraction

We denote the producer's domestic currency as DOM and the commodity
quotation currency as FOR.

We use the FX net present value ratio Q(T ) as the applied exchange rate
in our discussion, but emphasize that the analysis is easily adjusted for
the e�ect of the FX spot days lag1, as well as small lags between the
observation of the commodity �xing and the applicable FX �xing2.

1The observable FX spot quote is in fact, in general, a short dated forward contract

quote, and not equal to the actual current NPV of holding one foreign currency unit which

we denote as Q(t) at time t.

2A positive lag of the FX �xing leads to a small adjustment factor comprised by the

ratios of FX forwards. A negative FX lag, i.e., the situation when the FX �xing is taken

before the commodity �xing, leads to an additional small quanto adjustment.
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2 Multiplication becomes subtraction

Notation:-

vDOM(t) : domestic composite option value at time t

P
DOM

T (t) : domestic zero coupon bond value for maturity T at time t

P
FOR

T (t) : foreign zero coupon bond value for maturity T at time t

Eℵt
[
c(T )

]
: expectation of c(T ) in measure induced by numéraire ℵ

as of �ltration Ft

QFORDOM(t) : one FOR currency unit's value in DOM at time t

QFORDOM

T (t) : par strike for T -forward contract on QFORDOM at time t
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2 Multiplication becomes subtraction

The composite call option value is

vDOM(t) = P
DOM

T (t) · EP
DOM

T
t

[
(S(T ) ·QFORDOM(T )−K)+

]

which, by changing to the foreign T -forward measure, becomes

= QFORDOM(t) · P FOR

T (t) · EP
FOR

T
t

[
(S(T )·QFORDOM(T )−K)

+

QFORDOM(T )

]

= QFORDOM(t) · P FOR

T (t) · EP
FOR

T

[(
S(T )− K

QFORDOM(T )

)
+

]
. (3.1)
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2 Multiplication becomes subtraction

This simpli�es to the T -forward domestic value

EP
DOM

T

[
(S(T ) ·QFORDOM(T )−K)+

]
= (3.2)

QFORDOM

T (t) · EP
FOR

T

[(
S(T )−K ·QDOMFOR

::::::
(T )
)

+

]
.

NOTE:

Both S(T ) and QDOMFOR

::::::
are martingales in the foreign T -forward measure!

An option on the product of a (quantoed) asset price and a (martingale)
FX rate turns into a zero-strike option on the spread of two martingales

E
[(

S −K ·QDOMFOR

::::::

)
+

]
. (3.3)

A multiplication becomes a subtraction.

Peter Jäckel (VTB Capital) Composite option valuation with smiles 10 / 33



3 Generic bilinear option valuation Lots of quadrant digitals

Generic bilinear option valuation

In order to compute the value of the generic bilinear (call3) option

E
[
(α ·A + β ·B − Γ)+

]
(4.1)

we start with the following exact relationship for4 α > 0 and β > 0

(α ·A + β ·B − Γ)+ =
∫ ∞

−∞
1{α·A ≥ x ≥ Γ−β·B}dx , (4.2)

and hence

E
[
(α ·A + β ·B − Γ)+

]
=
∫ ∞

−∞

�quadrant-digital�︷ ︸︸ ︷
E
[
1{A ≥ x/α} · 1{B ≥ (Γ−x)/β}

]
dx . (4.3)

This is a string of upper-right-quadrant-digitals along the anti-diagonal-esque

B = Γ
β −

α
β ·A . (4.4)

3The derivation for put options follows in complete analogy, though note that valua-

tions should never be mapped from out-of-the-money to in-the-money!

4Mutatis mutandis, the logic applies equally to all combinations of signs of α and β.
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3 Generic bilinear option valuation Lots of quadrant digitals The line integral

integration line

area probability

B = Γ/β −A · α/β

Γ/α

Γ/β

A

B
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3 Generic bilinear option valuation Lots of quadrant digitals The line integral

For the integration limits, �nd the quantiles A`, Au, B`, and Bu such that

P{A<A`}= pmin, P{A>Au}= pmin, P{B<B`}= pmin, P{B>Bu}= pmin,

where pmin :=
√
DBL_MIN , and integrate to the outermost intersection points

of the integration line with those univariate quantile levels:

A

B

A` Au

B`

Bu

BAD

A

B

A` Au

B`

Bu

GOOD
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3 Generic bilinear option valuation Calls/puts, α ≶ 0, β ≶ 0

All other cases, i.e., calls vs puts, α ≶ 0, β ≶ 0, etc.

Calls and puts (for the same α and β) use opposite quadrant-digitals.

For α > 0 and β < 0, we have

E
[
(α ·A− |β| ·B − Γ)+

]
=
∫ ∞

−∞
E
[
1{A ≥ x/α} · 1{B ≤ (x−Γ)/|β|}

]
dx .

(4.5)

This is a string of lower-right-quadrant-digitals along the diagonal-esque

B = − Γ
|β| + α

|β| ·A . (4.6)

For all other α ≶ 0 and β ≶ 0, we use the invariance

E
[
(α ·A− β ·B − Γ)+

]
= E

[
((−Γ)− (−α) ·A + (−β) ·B)+

]
.
(4.7)
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3 Generic bilinear option valuation The quadrant-digital

How do we evaluate the quadrant-digitals?

Take the example of the put option with α > 0 and β > 0:

E
[
(Γ− α ·A− β ·B)+

]
=
∫ ∞

−∞
E
[
1{A ≤ x/α} · 1{B ≤ (Γ−x)/β}

]
dx . (4.8)

We approximate the quadrant-digital by the aid of the Gaussian copula

E
[
1{A ≤ a} · 1{B ≤ b}

]
≈ G(P{A ≤ a},P{B ≤ b}, ρAB) (4.9)

where

P{X≤K} = E
[
1{X≤K}

]
= Φ(−d2) + K ·

√
T · ϕ(d2) · dσ̂(K)

dK (4.10)

with d2 := ln(E[X]/K)

σ̂
√

T
− σ̂

√
T

2 (4.11)

and G is the standard Gaussian copula function de�ned as

G(pa, pb, ρ) = Φ2

(
Φ−1(pa),Φ−1(pb), ρ

)
. (4.12)
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3 Generic bilinear option valuation The quadrant-digital Avoiding subtractive cancellation

In order to avoid catastrophic subtractive cancellation
( )

, use for the:-

lower right quadrant with tail probabilities p̄a := P{A>a}and pb := P{B<b},

P{A>a ∧ B<b} = P{B<b}− P{A<a
:::

∧ B<b}

pb −G(1− p̄a
:::::

, pb, ρAB) = G(p̄a, pb,−ρAB) ,
(4.13)

upper left quadrant with tail probabilities pa := P{A<a} and p̄b := P{B>b},

P{A<a ∧ B>b} = P{A<a}− P{A<a ∧ B<b
:::

}

pa −G(pa, 1− p̄b
:::::

, ρAB) = G(pa, p̄b,−ρAB) ,
(4.14)

upper right quadrant

P{A>a ∧ B>b} = P{A>a}+ P{B>b}− 1 + P{A<a
:::

∧ B<b
:::

}

p̄a + p̄b − 1 + G(1− p̄a
:::::

, 1− p̄b
:::::

, ρAB) = G(p̄a, p̄b, ρAB)
(4.15)

to evaluate all quadrants via the lower left quadrant of the Gaussian copula
using only the quadrant-speci�c univariate tail probabilities.
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4 Solid bivariate cumulative normals

Solid bivariate cumulative normals

Most implementations of analytical formulæ based on the bivariate cumu-
lative normal probability function Φ2(x, y, ρ) su�er severely from the use of
an unreliable algorithm for Φ2.

Personally, I have distrusted any analytics based on Φ2 for many for exactly
that reason: either Φ2 is not reliable enough to be universally usable, or,
depending on the algorithm behind the scenes, so heavy that alternative
methods are preferable.

Peter Jäckel (VTB Capital) Composite option valuation with smiles 17 / 33

4 Solid bivariate cumulative normals

Graeme West [Wes05] also warns of this problem:

�Espen Haug relates a story to me of how his book [Hau97] has re-
ceived a rather scathing review [...] option prices where the bivariate
cumulative is used can be negative, under not absurd inputs!�

Graeme West [Wes05] took this as an incentive for a systematic inves-
tigation. He discusses various past reviews and algorithms, in particular
comparing what he refers to as algorithms DW1 and DW2 from [DW89],
and a re�nement by Genz in [Gen04] based on DW2. He summarizes:

�So, this modi�ed DW2 algorithm might be the algorithm of choice.
It is not as accurate as the Genz algorithm, but does not have any
material inaccuracies, and is certainly a lot more compact.�

Other studies [Mey09, Mey13] con�rm the superiority of Genz's algorithm.

I found Genz's algorithm to be fast and compact.
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4 Solid bivariate cumulative normals Genz's algorithm Who says this is not compact?

It’s 32 lines of code, and only one of two branches is executed ...
double GenzBivariateCdf(double x, double y, double rho) {

double ar = fabs(rho), H = -x, K = -y, HK = H * K, BVN = 0;
const int n_GL = ar < 0.3 ? 6 : (ar < 0.75 ? 12 : 20);
const double *roots = GaussLegendrePoints[n_GL -1], *weights = GaussLegendreWeights[n_GL -1];
if (ar < 0.925) {

if (ar > 0) {
const double HS = 0.5 * (H * H + K * K), ASR = asin(rho);
for (int i = 0; i < n_GL; ++i) {

const double SN = sin(ASR * (roots[i] + 1) / 2);
BVN += weights[i] * exp((SN * HK - HS) / (1 - SN * SN));

}
BVN *= 0.5 * ASR * ONE_OVER_TWO_PI;

}
BVN += UnivariateCdf(-H) * UnivariateCdf(-K);

} else {
if (rho < 0) { K = -K; HK = -HK; }
if (ar < 1) {

double AS = (1 - rho) * (1 + rho), A = sqrt(AS), tmp = H - K, BS = tmp * tmp ,
C = (4 - HK) / 8, D = (12 - HK) / 16, ASR = -(BS / AS + HK) / 2;

if (ASR > -100) BVN = A * exp(ASR) * (1 - C * (BS - AS) * (1 - D * BS / 5) / 3 + C * D * AS * AS / 5);
if (-HK < 100) {

const double B = sqrt(BS);
BVN -= exp(-HK / 2) * SQRT_TWO_PI * UnivariateCdf(-B / A) * B * (1 - C * BS * (1 - D * BS / 5) / 3);

}
A *= 0.5;
for (int i = 0; i < n_GL; ++i) {

tmp = A * (roots[i] + 1);
const double x2 = tmp * tmp , RS = sqrt(1 - x2), rs_minus_one /* PJ */ = SqrtOnePlusXMinusOne(-x2);
ASR = -(BS / x2 + HK) / 2;
if (ASR > -100)

BVN += A * weights[i] * exp(ASR) * ( exp(HK*rs_minus_one /(2*(1+ RS)))/RS - (1+C*x2*(1+D*x2)) );
}
BVN *= -ONE_OVER_TWO_PI;

}
if (rho > 0) BVN += UnivariateCdf(-std::max(H, K));
else BVN = (K > H) ? (UnivariateCdf(K) - UnivariateCdf(H)) - BVN : -BVN;

}
return BVN;

}

double SqrtOnePlusXMinusOne(double x) { // sqrt (1+x)-1 expanded for small x. c© PJ, 2018.
if (fabs(x) < 0.03125) // Relative accuracy (in perfect arithmetic) better than 3E-17 on its branch.

return x * ( 0.5 - x *(0.1250000000000031+x*(0.12502244801304626+0.023447890920414075*x))
/(1+x*(1.5001795841045374+x*(0.62517291961892215+0.062530338982545546*x))) );

return sqrt(1 + x) - 1;
}
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4 Solid bivariate cumulative normals Genz's algorithm Who says this is not compact?

Decadic logarithm of |relative accuracy of
√

1 + x − 1|.

-18

-17

-16

-15

-14

-13

-12

-0.05 -0.03 -0.01 0.01 0.03 0.05

with expansion

without expansion

expansion in perfect arithmetic
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5 Does it work?

Does it work?

We compare the resulting composite option prices for BRENT·USDRUB as
of 2018-09-06 (with ρ = −40%) with a Monte Carlo simulation, converted
to equivalent Black (implied) volatilities.

We also include the smile-free (At-The-Forward) approximation

σ̂composite =
√

σ̂2
S + 2 · ρSQ · σ̂S · σ̂Q + σ̂2

Q (6.1)

and the geodesic strikes approximation [Jäc12] which uses (6.1) but with
implied volatilities σ̂S and σ̂Q looked up at the strikes

K∗
S = Ŝ · e

„
ln

“
K

ŜQ̂

”
· σ̂S·(σ̂S+ρSQσ̂Q)

σ̂2
S

+2σ̂SρSQσ̂Q+σ̂2
Q

«

K∗
Q = Q̂ · e

„
ln

“
K

ŜQ̂

”
· σ̂Q·(σ̂Q+ρSQσ̂S)

σ̂2
S

+2σ̂SρSQσ̂Q+σ̂2
Q

«
,

(6.2)

where Ŝ := E[S] and Q̂ := E[Q], in the comparison.
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5 Does it work? You bet!

Expiry: 2Y. 1M Monte Carlo iterations.
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5 Does it work? You bet!

Expiry: 1Y. 1M Monte Carlo iterations.
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5 Does it work? You bet!

Expiry: 6M. 1M Monte Carlo iterations.
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5 Does it work? You bet!

Expiry: 3M. 64M Monte Carlo iterations.
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5 Does it work? You bet!

Expiry: 1M. 1G Monte Carlo iterations (but still not enough for low strikes).

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

20%

22%

24%

26%

28%

30%

32%

34%

36%

38%

50% 60% 70% 80% 90% 100% 110% 120% 130% 140% 150%

σ̂ [BRENT]

σ̂ [Composite, ATF approximation]

σ̂ [Composite, geodesic approximation]

σ̂ [Composite as spread]

σ̂ [Composite, Monte Carlo]

σ̂ [USDRUB, right ordinate]

Peter Jäckel (VTB Capital) Composite option valuation with smiles 26 / 33



5 Does it work? The quadrant-digital integrand can be full of surprises

The quadrant-digital integrand for BRENT·USDRUB at T=3M across strikes,
each line rescaled by its own maximum,

puts when K<100%, else calls.

 2.5  3  3.5  4  4.5  5  5.5  6
integration abscissa [log-scale]

50%

100%

150%

200%

250%

K

You want

an adaptive

quadrature here!
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5 Does it work? The quadrant-digital integrand

In the following, note that the integration line for E
[
(± (A−B ·K))+

]
given by

B = A/K , (6.3)

in logarithmic coordinates, becomes

ln(B) = ln(A)− ln(K). (6.4)

The tilt becomes a shift:

K = 5
3

K = 3
5

0.5 1 1.5 2

0.5

1

1.5

2
K =1

A

B

⇔

K = 5
3

K = 3
5

−0.5 0.5

−0.5

0.5

K =1

ln(A)

ln(B)
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5 Does it work? The quadrant-digital integrand

log10(density)
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5 Does it work? The quadrant-digital integrand

log10(density)
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5 Does it work? The quadrant-digital integrand

log10(density)
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5 Does it work? The quadrant-digital integrand

log10(density)
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