Composite option valuation with smiles

Peter Jäckel

${ }^{\text {E }}$ VTB Capital

(1) The economic purpose of composite options
(2) Turning a multiplication into a subtraction
(3) Generic bilinear option valuation: lots of quadrant digitals
(4) Solid bivariate cumulative normals
(5) Does it work?

The economic purpose of composite options

- Global Depository Receipts (GDR) are proxy securities that allow investors in one currency market (ZZZ) to participate in shares that are domestic in some other currency (YYY).
- The value of the GDR is solely generated by the value of the underlying share in its domestic currency YYY.
- Hence, the ZZZ-denominated GDR has a value (in principle) given by simply multiplying the share's YYY-denominated value with the corresponding FX rate, i.e.,

$$
\begin{equation*}
S_{\mathrm{GDR}}=S \cdot Q^{\mathrm{YYYZZZ}} \tag{2.1}
\end{equation*}
$$

where $Q^{\gamma Y y z z z}$ represents the net present value of one YYY currency unit in terms of ZZZ currency units.

- Unsurprisingly, where GDRs trade on exchanges, there typically also are options on those GDRs.
- These options trade in their own right, but their link to the underlying actual shares is given in terms of the composite option valuation formula

$$
\begin{equation*}
v_{\text {composite }}=\mathrm{E}\left[(S(T) \cdot Q(T)-K)_{+}\right] \tag{2.2}
\end{equation*}
$$

where we have dropped the FX subscript for brevity.

- This option value is in terms of currency ZZZ.
- Many commodities are quoted and sold worldwide in USD but produced in various countries around the world.
- Producers often wish to hedge their revenue streams
denominated in their own domestic currency.
This leads to composite put options that pay

$$
\begin{equation*}
(K-S(T) \cdot Q(T))_{+} . \tag{2.3}
\end{equation*}
$$

- On occasions, producers are also prepared to give up the potential upside of their revenues (denominated in their domestic currency) in return for a reduction of the interest on loans granted to them.
This leads to composite call options:

$$
\begin{equation*}
(S(T) \cdot Q(T)-K)_{+} . \tag{2.4}
\end{equation*}
$$

- As a variation of this theme, we also see this with (typically monthly) averaging features such as

$$
\begin{equation*}
\left(\sum_{i=1}^{n} S\left(T_{i}\right) \cdot Q\left(T_{i}\right) / n-K\right)_{+} \tag{2.5}
\end{equation*}
$$

Note that for the hedging of this latter case we may have access to options on $S(T)$, and to options on the FX rate, but we have no options on the composite underlying, unlike what we typically have with GDRs!

- Particularly for the (semi-)analytical valuation of composite Asian options, we'd ideally want to have a method for (semi-)analytical valuation of vanilla options on the composite

$$
\begin{equation*}
\tilde{S}(T):=S(T) \cdot Q(T) \tag{2.6}
\end{equation*}
$$

Multiplication becomes subtraction

- We denote the producer's domestic currency as DOM and the commodity quotation currency as FOR.
- We use the FX net present value ratio $Q(T)$ as the applied exchange rate in our discussion, but emphasize that the analysis is easily adjusted for the effect of the FX spot days lag^{1}, as well as small lags between the observation of the commodity fixing and the applicable FX fixing ${ }^{2}$.

[^0]
2 Multiplication becomes subtraction

Notation:-
$v^{\mathrm{DOM}}(t)$: domestic composite option value at time t
$P_{T}^{\text {DOM }}(t)$: domestic zero coupon bond value for maturity T at time t
$P_{T}^{\text {FOR }}(t)$: foreign zero coupon bond value for maturity T at time t
$\mathrm{E}_{t}^{\aleph}[c(T)]$: expectation of $c(T)$ in measure induced by numéraire \aleph as of filtration \mathcal{F}_{t}
$Q^{\text {FORDOM }}(t)$: one FOR currency unit's value in DOM at time t
$Q_{T}^{\text {FRDDM }}(t): \quad$ par strike for T-forward contract on $Q^{\text {FORDOM }}$ at time t

The composite call option value is

$$
v^{\mathrm{DOM}}(t)=P_{T}^{\mathrm{DOM}}(t) \cdot \mathrm{E}_{t}^{P_{T}^{\mathrm{DOM}}}\left[\left(S(T) \cdot Q^{\mathrm{FORDOM}}(T)-K\right)_{+}\right]
$$

which, by changing to the foreign T-forward measure, becomes

$$
\begin{align*}
& =Q^{\mathrm{FORDOM}}(t) \cdot P_{T}^{\mathrm{FOR}}(t) \cdot \mathrm{E}_{t}^{P_{T}^{\mathrm{FOR}}}\left[\frac{\left(S(T) \cdot Q^{\mathrm{FORDOM}(T)-K)_{+}}\right.}{Q^{\mathrm{FORDOM}(T)}}\right] \\
& =Q^{\mathrm{FORDOM}}(t) \cdot P_{T}^{\mathrm{FOR}}(t) \cdot \mathrm{E}^{P_{T}^{\mathrm{FOR}}}\left[\left(S(T)-\frac{K}{Q^{\mathrm{FORDOM}(T)}()_{+}}\right] .\right. \tag{3.1}
\end{align*}
$$

2 Multiplication becomes subtraction

This simplifies to the T-forward domestic value

$$
\begin{align*}
& \mathrm{E}^{P_{T}^{\mathrm{DOM}}\left[\left(S(T) \cdot Q^{\mathrm{FORDOM}}(T)-K\right)_{+}\right]}= \tag{3.2}\\
& \quad Q_{T}^{\mathrm{FORDOM}}(t) \cdot \mathrm{E}^{P_{T}^{\mathrm{FOR}}[(S(T)-K \cdot \underbrace{Q^{\mathrm{DOMFOR}}}(T))_{+}]}
\end{align*}
$$

NOTE:

Both $S(T)$ and $Q^{\text {Dompor }}$ are martingales in the foreign T-forward measure!
\Rightarrow An option on the product of a (quantoed) asset price and a (martingale) FX rate turns into a zero-strike option on the spread of two martingales

$$
\begin{equation*}
\mathrm{E}[(S-K \cdot \underbrace{Q^{\text {DOMFOR }}})_{+}] . \tag{3.3}
\end{equation*}
$$

A multiplication becomes a subtraction.

Generic bilinear option valuation

In order to compute the value of the generic bilinear (call ${ }^{3}$) option

$$
\begin{equation*}
\mathrm{E}\left[(\alpha \cdot A+\beta \cdot B-\Gamma)_{+}\right] \tag{4.1}
\end{equation*}
$$

we start with the following exact relationship for ${ }^{4} \alpha>0$ and $\beta>0$

$$
\begin{equation*}
(\alpha \cdot A+\beta \cdot B-\Gamma)_{+}=\int_{-\infty}^{\infty} \mathbf{1}_{\{\alpha \cdot A \geq x \geq \Gamma-\beta \cdot B\}} \mathrm{d} x \tag{4.2}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\mathrm{E}\left[(\alpha \cdot A+\beta \cdot B-\Gamma)_{+}\right]=\int_{-\infty}^{\infty} \overbrace{\mathrm{E}\left[\mathbf{1}_{\{A \geq x / \alpha\}} \cdot \mathbf{1}_{\{B \geq(\Gamma-x) / \beta\}}\right]}^{\text {"quadrant-digital" }} \mathrm{d} x . \tag{4.3}
\end{equation*}
$$

This is a string of upper-right-quadrant-digitals along the anti-diagonal-esque

$$
\begin{equation*}
B=\frac{\Gamma}{\beta}-\frac{\alpha}{\beta} \cdot A . \tag{4.4}
\end{equation*}
$$

[^1]

For the integration limits, find the quantiles $A_{\ell}, A_{u}, B_{\ell}$, and B_{u} such that

$$
\mathrm{P}_{\left\{A<A_{\ell}\right\}}=p_{\text {min }}, \quad \mathrm{P}_{\left\{A>A_{u}\right\}}=p_{\min }, \quad \mathrm{P}_{\left\{B<B_{\ell}\right\}}=p_{\min }, \quad \mathrm{P}_{\left\{B>B_{u}\right\}}=p_{\text {min }},
$$

where $p_{\text {min }}:=\sqrt{\text { DBL_MIN }}$, and integrate to the outermost intersection points of the integration line with those univariate quantile levels:

3 Generic bilinear option valuation
Calls/puts, $\alpha \lessgtr 0, \beta \lessgtr 0$

All other cases, i.e., calls vs puts, $\alpha \lessgtr 0, \beta \lessgtr 0$, etc.

- Calls and puts (for the same α and β) use opposite quadrant-digitals.
- For $\alpha>0$ and $\beta<0$, we have

$$
\begin{equation*}
\mathrm{E}\left[(\alpha \cdot A-|\beta| \cdot B-\Gamma)_{+}\right]=\int_{-\infty}^{\infty} \mathrm{E}\left[\mathbf{1}_{\{A \geq x / \alpha\}} \cdot \mathbf{1}_{\{B \leq(x-\Gamma) /|\beta|\}}\right] \mathrm{d} x \tag{4.5}
\end{equation*}
$$

This is a string of lower-right-quadrant-digitals along the diagonal-esque

$$
\begin{equation*}
B=-\frac{\Gamma}{|\beta|}+\frac{\alpha}{|\beta|} \cdot A \tag{4.6}
\end{equation*}
$$

- For all other $\alpha \lessgtr 0$ and $\beta \lessgtr 0$, we use the invariance

$$
\begin{equation*}
\mathrm{E}\left[(\alpha \cdot A-\beta \cdot B-\Gamma)_{+}\right]=\mathrm{E}\left[((-\Gamma)-(-\alpha) \cdot A+(-\beta) \cdot B)_{+}\right] \tag{4.7}
\end{equation*}
$$

How do we evaluate the quadrant-digitals?

Take the example of the put option with $\alpha>0$ and $\beta>0$:

$$
\begin{equation*}
\mathrm{E}\left[(\Gamma-\alpha \cdot A-\beta \cdot B)_{+}\right]=\int_{-\infty}^{\infty} \mathrm{E}\left[\mathbf{1}_{\{A \leq x / \alpha\}} \cdot \mathbf{1}_{\{B \leq(\Gamma-x) / \beta\}}\right] \mathrm{d} x . \tag{4.8}
\end{equation*}
$$

We approximate the quadrant-digital by the aid of the Gaussian copula

$$
\begin{equation*}
\mathrm{E}\left[\mathbf{1}_{\{A \leq a\}} \cdot \mathbf{1}_{\{B \leq b\}}\right] \approx G\left(\mathrm{P}_{\{A \leq a\}}, \mathrm{P}_{\{B \leq b\}}, \rho_{A B}\right) \tag{4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{P}_{\{X \leq K\}}=\mathrm{E}\left[\mathbf{1}_{\{X \leq K\}}\right]=\Phi\left(-d_{2}\right)+K \cdot \sqrt{T} \cdot \varphi\left(d_{2}\right) \cdot \frac{\mathrm{d} \hat{\sigma}(K)}{\mathrm{d} K} \tag{4.10}
\end{equation*}
$$

with

$$
\begin{equation*}
d_{2}:=\frac{\ln (\mathrm{E}[X] / K)}{\hat{\sigma} \sqrt{T}}-\frac{\hat{\sigma} \sqrt{T}}{2} \tag{4.11}
\end{equation*}
$$

and G is the standard Gaussian copula function defined as

$$
\begin{equation*}
G\left(p_{a}, p_{b}, \rho\right)=\Phi_{2}\left(\Phi^{-1}\left(p_{a}\right), \Phi^{-1}\left(p_{b}\right), \rho\right) \tag{4.12}
\end{equation*}
$$

In order to avoid catastrophic subtractive cancellation , use for the:-- lower right quadrant with tail probabilities $\bar{p}_{a}:=\mathrm{P}_{\{A>a\}}$ and $p_{b}:=\mathrm{P}_{\{B<b\}}$,

$$
\begin{align*}
\mathrm{P}_{\{A>a \wedge B<b\}} & =\mathrm{P}_{\{B<b\}}-\mathrm{P}_{\{A<a \wedge B<b\}} \\
p_{b}-G\left(1-\bar{p}_{a}, p_{b}, \rho_{A B}\right) & =\underline{\underline{G\left(\bar{p}_{a}, p_{b},-\rho_{A B}\right)}}, \tag{4.13}
\end{align*}
$$

- upper left quadrant with tail probabilities $p_{a}:=\mathrm{P}_{\{A<a\}}$ and $\bar{p}_{b}:=\mathrm{P}_{\{B>b\}}$,

$$
\begin{align*}
\mathrm{P}_{\{A<a \wedge B>b\}} & =\mathrm{P}_{\{A<a\}}-\mathrm{P}_{\{A<a \wedge B<b\}} \\
p_{a}-G\left(p_{a}, 1-\bar{p}_{b}, \rho_{A B}\right) & =\underline{\underline{G\left(p_{a}, \bar{p}_{b},-\rho_{A B}\right)}}, \tag{4.14}
\end{align*}
$$

- upper right quadrant

$$
\begin{align*}
& \mathrm{P}_{\{A>a \wedge B>b\}}=\mathrm{P}_{\{A>a\}}+\mathrm{P}_{\{B>b\}}-1+\mathrm{P}_{\{A<a \wedge B<b\}} \wedge \text { 位 } \\
& \bar{p}_{a}+\bar{p}_{b}-1+G\left(1-\bar{p}_{a}, 1-\bar{p}_{b}, \rho_{A B}\right)=\underline{\underline{G\left(\bar{p}_{a}, \bar{p}_{b}, \rho_{A B}\right)}} \tag{4.15}
\end{align*}
$$

to evaluate all quadrants via the lower left quadrant of the Gaussian copula using only the quadrant-specific univariate tail probabilities.

Solid bivariate cumulative normals

- Most implementations of analytical formulæ based on the bivariate cumulative normal probability function $\Phi_{2}(x, y, \rho)$ suffer severely from the use of an unreliable algorithm for Φ_{2}.
- Personally, I have distrusted any analytics based on Φ_{2} for many for exactly that reason: either Φ_{2} is not reliable enough to be universally usable, or, depending on the algorithm behind the scenes, so heavy that alternative methods are preferable.

4 Solid bivariate cumulative normals

- Graeme West [Wes05] also warns of this problem:
"Espen Haug relates a story to me of how his book [Hau97] has received a rather scathing review [...] option prices where the bivariate cumulative is used can be negative, under not absurd inputs!"
- Graeme West [Wes05] took this as an incentive for a systematic investigation. He discusses various past reviews and algorithms, in particular comparing what he refers to as algorithms DW1 and DW2 from [DW89], and a refinement by Genz in [Gen04] based on DW2. He summarizes:
"So, this modified DW2 algorithm might be the algorithm of choice. It is not as accurate as the Genz algorithm, but does not have any material inaccuracies, and is certainly a lot more compact."
- Other studies [Mey09, Mey13] confirm the superiority of Genz's algorithm.
I found Genz's algorithm to be fast and compact.

It's 32 lines of code, and only one of two branches is executed...

```
double GenzBivariateCdf(double x, double y, double rho) {
    double ar = fabs(rho), H = -x, K = - y, HK = H** K, BVN = 0;
    const int n_GL= ar<0.3 ? 6:( (ar<0.75 ? 12 : 20);
    const double *roots= GaussLegendrePoints[n_GL-1], *weights = GaussLegendreWeights[n_GL-1];
    if (ar < 0.925) {
        if (ar > 0) {
            const double HS = 0.5 * (H * H + K * K), ASR = asin(rho);
                for (int i = 0; i < n_GL; ++i) {
```



```
                BVN += weights[i] * exp((SN * HK
                BVN *= 0.5 * ASR * ONE_OVER_TWO_PI;
        }
        BVN += UnivariateCdf(-H) * UnivariateCdf(-K);
    } else {
        if (rho<0) { K = -K; HK = -HK; }
        if (ar < 1) {
            double AS = (1 - rho) * (1 + rho), A = sqrt(AS), tmp = H - K, BS = tmp * tmp
```



```
                if (-HK < 100)
                const double B = sqrt(BS).
                const double B = sqrt(BS);
                }
                A *= 0.5;
                for (int i = 0; i < n_GL; ++i) {
                tmp = A * (roots[i] + 1);
                const double x2 = tmp * tmp, RS = sqrt(1 - x2), rs_minus_one /* PJ */ = Sqrt0nePlusXMinus0ne(-x2);
                ASR = -(BS / x2 + HK) / 2;
                if (ASR > -100)
                BVN += A * weights[i] * exp(ASR) * ( exp(HK*rs_minus_one/(2*(1+RS)))/RS - (1+C*x2*(1+D*x2)) );
                } BVN *= -ONE_OVER_TWO_PI;
        if (rho > 0) BVN += UnivariateCdf(-std::max(H, K));
        else BVN = (K > H) ? (UnivariateCdf(K) - UnivariateCdf(H)) - BVN : - BVN;
    }
    return BVN;
}
double SqrtOnePlusXMinusOne(double x) { // sqrt(1+x)-1 expanded for small x. (c) PJ, 2018.
    if (fabs(x) < 0.03125) // Relative accuracy (in perfect arithmetic) better than 3E-17 on its branch.
    if return x * (0.5- x * (0.1250000000000031+x*(0.12502244801304626+0.023447890920414075*x))
    /(1+x*(1.5001795841045374+x*(0.62517291961892215+0.062530338982545546*x))) );
    return sqrt(1 + x) - 1;
}
```

 Peter Jäckel (VTB Capital)
 Composite option valuation with smiles
 Decadic logarithm of |relative accuracy of $\sqrt{1+x}-1 \mid$.

Does it work?

- We compare the resulting composite option prices for BRENT•USDRUB as of 2018-09-06 (with $\rho=-40 \%$) with a Monte Carlo simulation, converted to equivalent Black (implied) volatilities.
- We also include the smile-free (At-The-Forward) approximation

$$
\begin{equation*}
\hat{\sigma}_{\text {composite }}=\sqrt{\hat{\sigma}_{S}^{2}+2 \cdot \rho_{S Q} \cdot \hat{\sigma}_{S} \cdot \hat{\sigma}_{Q}+\hat{\sigma}_{Q}^{2}} \tag{6.1}
\end{equation*}
$$

- and the geodesic strikes approximation [Jäc12] which uses (6.1) but with implied volatilities $\hat{\sigma}_{S}$ and $\hat{\sigma}_{Q}$ looked up at the strikes

$$
\begin{align*}
& K_{S}^{*}=\hat{S} \cdot \mathrm{e}^{\left(\ln \left(\frac{K}{\hat{S} \tilde{Q}}\right) \cdot \frac{\hat{\sigma}_{s} \cdot\left(\hat{\sigma}_{s}+\rho_{s} \hat{\sigma}_{Q}\right)}{\hat{\sigma}_{S}^{2}+2 \hat{\sigma}_{s} \rho_{s} \hat{\sigma}_{Q}+\hat{\sigma}_{Q}^{2}}\right)} \\
& K_{Q}^{*}=\hat{Q} \cdot \mathrm{e}^{\left(\ln \left(\frac{K}{\hat{S} \hat{Q}}\right) \cdot \frac{\hat{\sigma}_{Q} \cdot\left(\hat{\sigma}_{Q}+\rho_{s} \hat{\sigma}_{s}\right)}{\hat{\sigma}_{s}^{2}+2 \hat{\sigma}_{s} \rho_{s} \hat{\sigma}_{Q}+\hat{\sigma}_{Q}^{2}}\right)}, \tag{6.2}
\end{align*}
$$

where $\hat{S}:=\mathrm{E}[S]$ and $\hat{Q}:=\mathrm{E}[Q]$, in the comparison.

Expiry: 2Y. 1M Monte Carlo iterations.

Expiry: 1Y. 1M Monte Carlo iterations.

Expiry: 6M. 1M Monte Carlo iterations.

Expiry: 3M. 64M Monte Carlo iterations.

Expiry: 1M. 1G Monte Carlo iterations (but still not enough for low strikes).

The quadrant-digital integrand for BRENT•USDRUB at $T=3 \mathrm{M}$ across strikes, each line rescaled by its own maximum,

5 Does it work? The quadrant-digital integrand
In the following, note that the integration line for $\mathrm{E}\left[(\pm(A-B \cdot K))_{+}\right]$ given by

$$
\begin{equation*}
B=A / K \tag{6.3}
\end{equation*}
$$

in logarithmic coordinates, becomes

$$
\begin{equation*}
\ln (B)=\ln (A)-\ln (K) \tag{6.4}
\end{equation*}
$$

The tilt becomes a shift:

$$
A=\text { Brent }, \quad B=\mathrm{RUBUSD}
$$

(lower right quadrant) integrand for $\mathrm{K}=200 \%$
integrand maximum integration line \qquad

$A=$ Brent,$\quad B=$ RUBUSD
(lower right quadrant) integrand for $\mathrm{K}=250 \%$ \qquad
integrand maximum integration line \qquad

$$
A=\text { Brent }, \quad B=\mathrm{RUBUSD}
$$

[DW89] Z. Drezner and G. Wesolowsky.
On the computation of the bivariate normal integral.
Journal of Statist. Comput. Simul., 35:101-107, 1989
[Gen04] A. Genz.
Numerical computation of rectangular bivariate and trivariate normal and t probabilities. Statistics and Computing, 14:151-160, 2004.
[Hau97] E. G. Haug.
The Complete Guide to Option Pricing Formulas.
McGraw-Hill, October 1997.
ISBN 0786312408
[Jäc12] P. Jäckel
Geodesic strikes for composite, basket, Asian, and spread options, July 2012.
พพพ.jaeckel.org/GeodesicStrikesForCompositeBasketAsianAndSpread0ptions.pdf.
[Mey09] C. Meyer.
The Bivariate Normal Copula., 2009.
[Mey13] C. Meyer.
Recursive Numerical Evaluation of the Cumulative Bivariate Normal Distribution. Journal of Statistical Software, 52, 2013.
[Wes05] G. West.
Better approximations to cumulative normal functions
Wilmott Magazine, January:30-32, 2005.

[^0]: ${ }^{1}$ The observable FX spot quote is in fact, in general, a short dated forward contract quote, and not equal to the actual current NPV of holding one foreign currency unit which we denote as $Q(t)$ at time t.
 ${ }^{2}$ A positive lag of the $F X$ fixing leads to a small adjustment factor comprised by the ratios of FX forwards. A negative FX lag, i.e., the situation when the FX fixing is taken before the commodity fixing, leads to an additional small quanto adjustment.

[^1]: ${ }^{3}$ The derivation for put options follows in complete analogy, though note that valuations should never be mapped from out-of-the-money to in-the-money!
 ${ }^{4}$ Mutatis mutandis, the logic applies equally to all combinations of signs of α and β.

