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1 Introduction

Introduction

CVA, FVA, and other XVA calculations, even in their simplest form, all
involve calculations that require some kind of conditional expectation of
a contract’s future (deflated) value v(t,x) for some t > 0 with x being
a suitable (Markovian) state vector subject to some conditioning, e.g.,
conditional on being positive:

F (t) = E
[
(v(t,x))+ · f(x)

]
(2.1)

for some function f(x) ≥ 0.

This is formally a forward-conditional expectation:

E
[
(v(t,x))+ · f(x)

]
= E

[
v(t,x) · 1{v(t,x)>0} · f(x)

]
(2.2)
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1 Introduction

In low dimensionalities, this can be computed directly with conventional
finite differencing methods.

In moderate or higher dimensions, it can, in principle, be computed with a
Monte-Carlo simulation if at least some kind of Markovian approximation
for the indicator function h?(t,x) ≈ 1{v(t,x)>0} can be found, i.e. F ? ≈ F
with

F ?(t) = E [v(t,x) · h?(t,x) · f(x)] (2.3)

Note that any small error ε in the domain in x on which the approximation
for h?(t,x) is 1 only enters the calculation in second order in ε.
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1 Introduction

To see this, consider that h?(t,x) = 1 for x ∈ ε(+) where ε(+) is a small
subdomain on which an accurate calculation would tell us that v(t,x) < 0,
but otherwise h?(t,x) is telling us the truth.

0

x

v(x)

1{v(x)>0}
h?(x)

ε(+)

In other words, h?(t,x) is giving us some false positives and the calcula-
tion (2.3) will add up all of the required positive contributions, but also
some erroneous negative contributions from ε(+).

The net result is F ? < F .
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1 Introduction

Now consider the reverse situation that h?(t,x) = 0 for x ∈ ε(−) where
ε(−) is a small subdomain on which an accurate calculation would tell us
that v(t,x) > 0, but otherwise h?(t,x) is telling us the truth.

0

x

v(x)

1{v(x)>0}
h?(x)

ε(−)

In other words, h?(t,x) is giving us some false negatives and the calcula-
tion (2.3) will not add up all of the required positive contributions since
some positive contributions from ε(−) will be missing.

The net result is F ? < F .
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1 Introduction

We see that any error ε in the domain where h?(t,x) is positive leads to
F ? < F .

Thus, ε = {} is a maximum for F ?, i.e.,

∂F ?

∂ε

∣∣∣∣
ε={}

= 0 . (2.4)

Thus, a local expansion of F ? in ε leads with a second order term.
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1 Introduction

The conventional methodology to establish an approximate indicator func-
tion h?(t,x) is to use a regression of path values of futures payments onto
a chosen functional form, e.g., typically, a multivariate polynomial to ap-
proximate the value function itself, e.g.,

v?(t,x) =
∑
i,j

αijkl · xki xlj (2.5)

αijk` = arg min
αijkl

N∑
q=1

(
v?(t,xq)− vq(t)

)2 (2.6)

vq(t) = (deflated) value of payments on path q after t (2.7)

h?(t,x) = 1{v?(t,x)>0} (2.8)

Then, in a second simulation, h?(t,x) is used to trigger the contribution
of each path to approximate F ? by virtue of the tower law:

F ?(t) = E [h?(t,x) · f(x) · E [v(T,x)|Ft]] (2.9)
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1 Introduction

When the valuation of v(t,x) itself involves callability, it may in turn
require another layer of regression approximation(s).

In (very) low dimensions, this works well.

However, as the dimensionality increases, the technical aspects of the
regressions to approximate the value function increase considerably, not
least because:-

the number n of coefficients grows fast with the dimensionality d:

n =

(
d+ k
k

)
with k being the maximum total power of the polynomial.

the shape of v(t,x) may be poorly matched by the used basis function set.

the regression effort grows like O(max(m,n) · n2) for m sample paths.
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2 Scattered (cluster) data interpolation

Scattered (cluster) data interpolation

Let’s recapitulate:-

Finite differencing methods suffer the curse of dimensionality due to their
requirement of a lattice of points.

Monte Carlo regressions (e.g., onto polynomials) become awkward in high
dimensions.

An important aspect of this is the difficulty to choose the right basis
function set, or a suitable interpolation candidate.

Engineers have long grappled with the issue of (multivariate) interpolation
to fit non-trivial topologies over scattered nodes.
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2 Scattered (cluster) data interpolation

In 1979, R. Franke produced a 380(!) page technical report comparing 29(!)
different surface interpolation methods [Fra79].

The most impressive method in these tests is themultiquadric method
of Hardy [Har71]. It is consistently best or near best in terms of accur-
acy, and always results in visually pleasant surfaces.

In 1984, Micchelli [Mic84] proved that the linear system to compute the
interpolation coefficients for the “MultiQuadric Surface” (MQS) method [as
it was then known] is always regular (in full arithmetic precision).

This was an important breakthrough since the Mairhuber-Curtis theorem
[Mai56, Cur58] declared that, in two or more dimensions, a generic inter-
polant leads to a singular system for infinitely many configurations of
interpolation nodes.
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2 Scattered (cluster) data interpolation

The crucial factor that leads to the linear system being always regular is that

the basis functions︸ ︷︷ ︸ must depend on the interpolation data!

v?(t,x) =
m∑
s=1

cs · ψs(x) (3.1)

REPEAT:

Not just the
︷ ︸︸ ︷
interpolation coefficients, but also the basis must depend

on the data!

This, and the radial nature of the multiquadric hyperboloids, led subsequently
to a flurry of developments of

Radial Basis Functions.

The beauty of all this is that the input data can be arbitrarily scattered!
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2 Scattered (cluster) data interpolation Radial Basis Functions

Radial Basis Functions

A radial basis function decomposition for a function f(x) : Rd → R is
typically defined by

f?(x) =

m∑
j=1

λj · φ(|x− xj |; εj) (3.2)

with φ(r; ε) being one of:-

Multiquadric [Har71]
√

1 + (εr)2

Inverse Multiquadric [Har71] 1/
√

1 + (εr)2

Gaussian e−(εr)2

Thin Plate Spline (εr)2 ln(|εr|)

C0 Matérn e−|εr|

C2 Matérn e−
√

3 |εr| · (1 +
√

3 |εr|)

C4 Matérn e−
√

5 |εr| · (1 +
√

5 |εr|+ 5(εr)2/3)
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2 Scattered (cluster) data interpolation Radial Basis Functions

Anyone coming from a background of conventional finite differencing or finite
elements, might be forgiven to expect something like this to be the result of
the decomposition (seen as a 1D interpolation here):

0
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f(x)

λ

φ(x)

f*(x)
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2 Scattered (cluster) data interpolation Radial Basis Functions

So you may be forgiven to be somewhat suprised that the so praised multi-
quadric basis is the complete opposite of a what a locally confined function
would look like:
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2 Scattered (cluster) data interpolation Radial Basis Functions

Scattered data interpolation over n cluster points is (usually) accomplished
by centering n basis functions in the cluster data locations themselves, and
solving the linear system

Φ · λ = f (3.3)

with

(Φ)ij = φ(|xi − xj |; εj) (3.4)

Peter Jäckel Cluster Induction May 2018 16 / 117



2 Scattered (cluster) data interpolation Radial Basis Functions

Multiquadric Φ matrix (ε = 2.6) for 15 Gaussian Sobol’ nodes in 1D:
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2 Scattered (cluster) data interpolation Radial Basis Functions

Multiquadric Φ−1 matrix for 15 Gaussian Sobol’ nodes in 1D:
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2 Scattered (cluster) data interpolation Radial Basis Functions The multiquadric spectrum

The spectrum of the multiquadric Φ matrix:
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2 Scattered (cluster) data interpolation Radial Basis Functions The multiquadric spectrum

The first three harmonic modes of Φ and their eigenvalues:
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2 Scattered (cluster) data interpolation Radial Basis Functions The multiquadric spectrum

The Nyquist mode of Φ:
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2 Scattered (cluster) data interpolation Radial Basis Functions The multiquadric spectrum

And all other modes of Φ in between:
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2 Scattered (cluster) data interpolation Radial Basis Functions Facts worth knowing about RBFs

One of the amazing properties of multiquadrics (and inverse multiquadrics)
is that, under certain technical conditions on f(x), in one dimension, RBF-
interpolation on a regular grid with node distance h converges to f(x)

exponentially.
That’s

|f(x)− f∗(x)| ∼ O
(

e−c/h
)

(3.5)

which is obviously much faster than any power convergence where

|f(x)− f∗(x)| ∼ O (hp) (3.6)
for any p.
This result was derived more than twenty years after Hardy picked them out
as the best practical choice for scattered data interpolation!
What’s more, “Madych and Nelson showed that for the space of conditionally
positive definite functions to which MQ belongs, a semi-norm exists and is
minimized by such functions” [Kan90b].
These findings finally justified why in practice they tend to be the best choice
(and this also holds for higher dimensions).
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2 Scattered (cluster) data interpolation Radial Basis Functions Facts worth knowing about RBFs

RBF-interpolation converges to polynomial interpolation as ε→ 0.

ε = 10:
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2 Scattered (cluster) data interpolation Radial Basis Functions Facts worth knowing about RBFs

ε = 2:

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10

f(x)

φ(x) 

[Multiquadric]

f*(x)

polynomial

λ [right axis]

Reciprocal condition number κ(Φ)−1 = 0.0061.

Peter Jäckel Cluster Induction May 2018 25 / 117

2 Scattered (cluster) data interpolation Radial Basis Functions Facts worth knowing about RBFs

ε = 0.25:
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2 Scattered (cluster) data interpolation Radial Basis Functions Facts worth knowing about RBFs

ε = 0.075:

-5E+11

-4E+11

-3E+11

-2E+11

-1E+11

0

1E+11

2E+11

3E+11

4E+11

5E+11

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10

f(x)

φ(x) 

[Multiquadric]

f*(x)

polynomial

λ [right axis]

Reciprocal condition number κ(Φ)−1 = 1.61E-13.

Peter Jäckel Cluster Induction May 2018 27 / 117

2 Scattered (cluster) data interpolation Radial Basis Functions Facts worth knowing about RBFs

ε = 0.0475:
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2 Scattered (cluster) data interpolation Radial Basis Functions Facts worth knowing about RBFs

ε = 0.001:
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2 Scattered (cluster) data interpolation Radial Basis Functions Facts worth knowing about RBFs

The limit of the shape parameter ε→ 0 is also referred to as the flat limit.

We saw how the interpolation becomes ragged as we approach this limit.

Once κ(Φ)−1 approaches or drops below the machine’s floating point
resolution, the solution incurs more and more truncation-induced noise.

Once again, Subtractive Cancellation raises its ugly head...

The Moore-Penrose (SVD) solution must be used.
Use Lapack’s “Divide-and-Conquer” algorithm (DGELSD).
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3 Meshless induction

Meshless induction

Obviously, it is possible to use Radial Basis Functions for the purpose of
a Monte Carlo regression, to evaluate any callability or future conditional
value, such as for the XVA valuation in (2.2).

However, that’s not what this presentation is about.

Instead, we try to go one step further.

Wouldn’t it be nice if we could not only interpolate over scattered data, but
directly use such a cluster of scattered nodes as base locations for a
backward induction of a partial differential equation?
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3 Meshless induction

Kansa [Kan90a] demonstrated that, apart from serving well to interpolate
a value surface over scattered data, radial basis function decompositions
are also useful to approximate partial derivatives of the value surface.

Armed with this result on the partial derivatives, Kansa [Kan90b] then pro-
ceeded as follows.

Given an advection-diffusion (forward) PDE

∂tf + u · ∂xf −D · ∂2
xf = 0 (4.1)

substitute the decomposition

f(x) = φ(x)> · λ (4.2)

for f , where φ(x) is a vector of radial basis functions

centered in an arbitrarily scattered cluster of vertices.
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3 Meshless induction

Changing notation to a generic spatial differential operator L in d dimensions,
we obtain

φ(x)> · λ̇(t) + (L · φ (x))> · λ(t) = 0 . (4.3)

for the backward Kolmogorov (pricing) equation.

Note that L applies analytically to the individual basis functions φi(x) !

Denoting the result of the analytical evaluation of L applied to φ(x) as

Lφ(x) := L · φ(x) (4.4)

we now have
φ(x)> · λ̇(t) + Lφ(x)> · λ(t) = 0 , (4.5)

i.e., a

“clustered” ordinary differential equation in λ(t).

Note that x takes on the role of a parameter vector!
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3 Meshless induction

In order to meet Micchelli’s non-singularity criterion, we ask for the cluster
ODE to hold for x to be in any of the cluster vertices {xi} ∀ i = 1, . . . , n
where the radial basis functions are centered.

Defining the matrices Φ and LΦ whose elements are

(Φ)ij = φ(|xi − xj |; εj) (4.6)

(LΦ)ij = L · φ(|x− xj |; εj)|x=xi
, (4.7)

we obtain the cluster ODE system

Φ · λ̇(t) + LΦ · λ(t) = 0 . (4.8)

REMARK. It is in principle possible to have more or fewer basis functions than locations
at which we ask for the original cluster ODE (4.5) to hold, or to choose locations different
from the basis centres. Either way, we will then demand for the system (4.8) to be
best matched in a least squares sense, naturally leading to the use of Singular Value
Decomposition for its solution.
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3 Meshless induction The tedious bit

Crunching out the analytics...

In a practical implementation, it is useful to define the cluster vertices in
terms of some ’cluster coordinate system’ that scales away any relative mag-
nitude differences of the individual state space coordinates, i.e., the elements
of the state vector x ∈ Rd.

Consider then a given coordinate-scaling diagonal matrix Ω such that we have
the transformation from the cluster coordinates ξ to state space coordinates
x via

x = Ω · ξ (4.9)

Obviously, the same scaling applies to the cluster vertices, i.e., the basis
function centres:

xi = Ω · ξi (4.10)

for i = 1, .., n for n cluster points.
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3 Meshless induction The tedious bit

We then only ever evaluate all basis functions in terms of cluster coordinates,
i.e. the j-th basis function as a function of x evaluates according to

φj(x) := φ(|ξ − ξj |, εj) (4.11)

with
ξ =

x

Ω
(4.12)

where φ(r; ε) is one of the fundamental radial basis functions, e.g., a multi-
quadric (which is really a hyperbola and not a ’quadr[at]ic’ function).

For the evaluation of the operator L applied to the radial basis functions,
we note then

∂

∂xk
=

1

ωk
· ∂
∂ξk

(4.13)

for k = 1, .., d.
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3 Meshless induction The tedious bit

For a generic advection-diffusion generator with advection coefficients that
are linear in the state variables, we obtain

L = 1
2

d∑
k,l=1

σk · ρkl · σl ·
∂2

∂xk∂xl
+

d∑
k,l=1

xk · κkl ·
∂

∂xl
(4.14)

= 1
2

d∑
k,l=1

ρ′kl ·
∂2

∂ξk∂ξl
+

d∑
k,l=1

ξk · κ′kl ·
∂

∂ξl
(4.15)

with

ρ′kl :=
σk
ωk
· ρkl ·

σl
ωl

(4.16)

κ′kl :=
ωk
ωl
· κkl (4.17)

though we note that we will drop the primes in the following.
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3 Meshless induction The tedious bit

After a considerable amount of tedious calculations, we arrive at the following
condensed expressions for L applied to φ(|∆ξ|, ε), with ∆ξ := ξ − ξ∗, i.e.,
a radial basis function centered in some cluster node ξ∗:-

Lφ = 1
2(d̃ · α+ β · γ) + α · χ1 (4.18)

L2φ = 1
4 ·
(
η · γ2 + 2 · ζ · (d̃ · γ + 2 · θ) + β · ( d̃2

+ 2 · ι)
)

(4.19)

+ 1
2 ·
(

2 · α · d̃2 + β · d̃ · χ1 + 2 · β · (χ4 + χ5) + ζ · γ · χ1

)
+ 1

2 · ((ζ · γ + β · d̃) · χ1 + 2 · β · χ5)

+ α · (χ2 + χ3) + β · χ2
1

where, with (R)kl := ρkl, (K)kl := κkl, and r := |∆ξ|,
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3 Meshless induction The tedious bit

α = φ′

r γ = ∆ξ> ·R ·∆ξ

β = 1
r2

(
φ′′ − φ′

r

)
θ = ∆ξ> ·R2 ·∆ξ

ζ = 1
r3

[
φ′′′ − 3

r (φ′′ − φ′

r )
]

χ1 = ξ> ·K ·∆ξ

η = 1
r4

[
φ′′′′ − 6φ

′′′

r + 15
r2

(φ′′ − φ′

r )
]

χ2 = ξ> ·K ·K> · ξ

d̃ = Tr(R) χ3 = ξ> ·K2 ·∆ξ

ι = Tr(R2) χ4 = ∆ξ> ·R ·K ·∆ξ

d̃2 = Tr(R ·K) χ5 = ξ> ·K ·R ·∆ξ .

(4.20)
Only α, β, ζ, and η depend on the type of RBF!
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3 Meshless induction The tedious bit

Further, we obtain:-

when when
φ =

√
1 + (εr)2 : φ = e−(εr)2 :

α = ε2

φ α = −2 · ε2 · φ

β = −α · ε2
φ2

β = −2 · ε2 · α

ζ = −3 · β · ε2
φ2

ζ = −2 · ε2 · β

η = −5 · ζ · ε2
φ2

η = −2 · ε2 · ζ

(4.21)
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3 Meshless induction Some observations

Before we proceed to numerical integration scheemes of our system of ODEs,
we make a few observations.

If we assume the existence of Φ−1, the system (4.8) can be written as

λ̇(t) +
(
Φ−1 · LΦ

)
· λ(t) = 0 (4.22)

with formal solution

λ(t−∆t) = e∆t·(Φ−1·LΦ) · λ(t) . (4.23)
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3 Meshless induction Some observations

Equally, if we use

Φ · λ = f ⇐⇒ λ = Φ−1 · f (4.24)

and define G := LΦ · Φ−1, we have

ḟ(t) +G · f(t) = 0 . (4.25)

Note that (4.25) is a system of ODEs directly for the value vector f !
This means that we can in principle carry out a backward induction
directly on a set of arbitrarily scattered cluster vertices, without ever
computing any form of local (finite-differencing or otherwise) partial
derivatives from the value function!
Finally, unsurprisingly, the formal solution of (4.25) is

f(t−∆t) = e∆t·G · f(t) . (4.26)

Remark: in practice, due to the need for SVD with cut-off, the use of G induces an
unnecessary early projection onto the subspace of functions that can be represented by
the basis.
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3 Meshless induction Some observations

LΦ matrix for 15 Gaussian Sobol’ nodes in 1D (for a standard diffusion):

ε = 2.6, σ = 0.25
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3 Meshless induction Some observations

The generator matrix G = LΦ · Φ−1:
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3 Meshless induction Some observations

The (backward) propagator e∆t·G over actual ξ coordinates (with ∆t = 1):
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This looks like the typical Viking ship we expect
for a proper transition probability matrix!!!
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3 Meshless induction Some observations The generator’s spectrum

The spectrum of the multiquadric generator matrix G = LΦ · Φ−1:
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3 Meshless induction Some observations The generator’s spectrum

The first three harmonic modes of G and their eigenvalues:
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3 Meshless induction Some observations The generator’s spectrum

The Nyquist mode of G (not identical to that of Φ):
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3 Meshless induction Some observations The generator’s spectrum

And all other modes of G in between:
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4 The truth is implicit

There’s more to life than Crank-Nicolson

Despite there being all the mentioned possible ways to transform the ODE

Φ · λ̇(t) + LΦ · λ(t) = 0 , (4.8)

numerical experience suggests it is best to proceed with it directly as it is!
As a first order implicit scheme:

(Φ−∆t · LΦ) · λ(t−∆t) = Φ · λ(t) . (5.1)

Note that since f(t) = Φ ·λ(t), we can always evaluate the right hand side
directly from the respectively given terminal boundary conditions, i.e., the
(final) pay-off (where applicable):

(Φ−∆t · LΦ) · λ(T −∆t) = f(T ) . (5.2)

This avoids the projection of any pay-off value functions onto the RBF basis!
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4 The truth is implicit Cluster contraction

This may not seem like much of an advantage since this projection, by its
nature of being an exact interpolation, ought to return the exact pay-off
values at the cluster vertices.

However, since some trades may be long-dated, the consistent valuation of
all the legs of a portfolio may involve laying out a calculation for tens of
years, with some of the trades in the portfolio being only short dated.

If we fix the cluster-to-state-space scaling matrix Ω to suit the longest trade,
the short-dated components can incur valuation over a set of (state space)
nodes that are effectively many standard deviations away from the money.
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4 The truth is implicit Cluster contraction

It is for this reason that it can be beneficial to use a different Ωq := Ω(tq)
for each time horizon tq, q = 0, ..,m for m time steps from the valuation
date to the last observation date.
Since we always use the same (de-scaled) cluster coordinate vertices {ξi}
for i = 1, .., n, and since, typically, we choose

Ωq−1 < Ωq (5.3)

in all of its (diagonal) elements. This means that our cluster, in state space
coordinates, typically contracts as we carry out the backward induction:

xi(tq) = Ωq · ξi =⇒ |xi(tq−1)| < |xi(tq)| . (5.4)

Note that this has no impact on the elements of the matrix Φ since it is fully
evaluated simply on cluster coordinates, but it does mean that LΦ varies
from one time step to the next due to its dependence on Ω, i.e.,

LΦq := LΦ(tq) . (5.5)
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4 The truth is implicit Cluster contraction

Having rolled back to some time horizon tq, i.e., having computed

λq := λ(tq) , (5.6)

and taking into account additional payoff contributions happening at tq de-
noted as πq(x, tq), the next standard fully implicit step backwards to tq−1 is
then

(Φ−∆t · LΦq−1) · λq−1 = Φ〈q−1,1〉 · λq + πq (5.7)

with the matrix Φ〈q−1,1〉 defined by(
Φ〈q−1,1〉

)
ij

= φ(|(xi(tq−1)− xj(tq))/Ωq|; εj) (5.8)

= φ(|Ωq−1

Ωq
· ξi − ξj |; εj)

and the elements of the vector πq given by

(πq)i = πq(xi(tq−1), tq) = πq(Ωq−1 · ξi, tq) (5.9)

Note that we avoid the projection of the extra payment πq onto the basis!

Peter Jäckel Cluster Induction May 2018 53 / 117

4 The truth is implicit Cluster contraction

To illustrate the basis function evaluation logic in (5.8)
in state space coordinates:

t

tq−1 tq

∼Ω(t)

x

xi(t)

xi(tq−1) projected to tq
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4 The truth is implicit Cluster contraction

And, for comparison, in cluster coordinates:

t

tq−1 tq

ξ

ξi(t)
ξi(tq−1) projected to tq
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4 The truth is implicit A word on stability

To analyze, say, the stability of the first order implicit scheme

(Φ−∆t · LΦq−1) · λq−1 = Φ · λq (5.10)

we investigate the spectrum of

(1−∆t · G̃)−1 (5.11)

where
G̃q−1 := Φ−1 · LΦq−1 (5.12)

which is the transpose of Gq−1 when all εj are the same (and thus Φ = Φ>).
In comparison, to analyze, say, the stability of the first order explicit scheme

Φ · λq−1 = (Φ + ∆t · LΦq) · λq . (5.13)

we need to see the spectrum of

(1 + ∆t · G̃q) . (5.14)

Note that both schemes require the solution of a dense linear system!
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4 The truth is implicit A word on stability

For our running multiquadric example, with ∆t = 0.25:
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The similarity of the Nyquist modes of
Φ and G̃ can be used to (reasonably) ef-
ficiently find the stability threshold ∆t?

of the explicit propagator (1 + ∆t · G̃).
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4 The truth is implicit No need to be so explicit

Given that the (first order) explicit and implicit schemes both require the
solution of a dense linear system, the advantage of the explicit scheme re-
duces to the fact that we can pre-factorise Φ once for all time steps.

However, caution should be applied for the first step backward from any
payment date, i.e., from any point in time that adds a time-inhomogeneous
source term.

Since financial contingent payment formulæ often contain non-differentiable
terms, attempting a fully explicit step straight out of a payment date amounts
to a projection of the payoff onto the radial basis, and that rarely works well!

All in all, implicit schemes appear to be generally the better choice.
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4 The truth is implicit Second order schemes

Since the Crank-Nicolson scheme contains an explicit component, we equally
(generally) don’t favour it for higher order convergence in ∆t.

Instead, the following schemes have been found to be of merit:-

BDF2. This is a second-order fully implicit stiff scheme [CH52, Gea71]
originally for the forward ODE

ẏ = f(y) (5.15)
given by

y(tn+2) = 4
3y(tn+1)− 1

3
y(tn) + 2

3 · τ · f (y(tn+2)) (5.16)

with time steps of length τ . In this context here, this becomes

(Φ− 2
3∆t · LΦq) · λq = 4

3 · Φ · λq+1 − 1
3 · Φ · λq+2︸ ︷︷ ︸

f(tq+2)

. (5.17)

This scheme requires a start-up.

When started with Crank-Nicolson, it is also referred to as TR-BDF2.
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4 The truth is implicit Second order schemes

Padé(0,2) is based on the (0,2)-Padé expansion et ≈ 1

1− t+ t2/2
.

It is a second-order fully implicit scheme, sometimes (though rarely) also
referred to as second order backwards Euler or simply as

second order implicit.
In this context here, we have

(Φ−∆t · LΦq + 1
2∆t2 · L2Φq) · λq = Φ · λq+1︸ ︷︷ ︸

f(tq+1)

. (5.18)

NOTE that L2Φ is the matrix given by the analytical evaluation of L2 ·φ,
i.e., its elements are(

L2Φ
)
ij

= L2 · φ(|x− xj |)
∣∣
x=xi

. (5.19)

The matrix L2Φ is not the same as (LΦ)2!

Details for the calculation of L2Φ were given in equation (4.19) on page 39.

The second order implicit method also serves well to start-up the BDF2 scheme.
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4 The truth is implicit Some results

Some results

We look at a 1Y ATM vanilla FX option with 20% volatility.

We show its price convergence to the exact value as a function of:-

the number of time steps nT for fixed ncluster, and

the number of cluster nodes ncluster fixed nT for,

priced with Black-Scholes-Merton model and a cross-currency Hull-White
(aka ’Linear Gaussian Markov’) model with normal rates volatilites of 200bps
and mean reversion speeds of 5% for USD and 10% else.

The cluster nodes are all from a Sobol’ sequence mapped to normal variates.
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4 The truth is implicit Some results

Vanilla 1Y ATM FX option with Black-Scholes and ncluster = 27 − 1 = 127.
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4 The truth is implicit Some results

Vanilla 1Y ATM FX option with Black-Scholes and nT = 26 = 64.
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4 The truth is implicit Some results

The detachment effect of the long range growth mode of multiquadrics:

option value of 1Y call (σ = 20%, K = 1.12)
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4 The truth is implicit Some results

The decay effect of Gaussian RBFs (1Y ATM call):

option value of 1Y call (σ = 20%, K = 1.12)
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4 The truth is implicit Some results

Vanilla 1Y ATM FX option with Black-Scholes and ncluster = 28 − 1 = 255.
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4 The truth is implicit Some results

Vanilla 1Y ATM FX option with Black-Scholes and nT = 25 = 32.
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4 The truth is implicit Some results

EURUSD call option with Black-Scholes (S = K = 1.12).
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4 The truth is implicit Some results

Comparison with exact analytical values (in gray):
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4 The truth is implicit Some results

1Y ATM composite option with Black-Scholes and ncluster = 28 − 1 = 255.
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4 The truth is implicit Some results

Composite option E[(EURUSD ·GBPUSD− 1.4224)+] with Black-Scholes
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4 The truth is implicit Some results

Composite option E[(EURUSD ·GBPUSD− 1.4224)+] with Black-Scholes
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4 The truth is implicit Some results

Comparison with exact analytical values (in gray):
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4 The truth is implicit Some results

1Y ATM FX option with Linear Gaussian Markov model and ncluster = 255.

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 1 2 3 4 5 6 7 8 9

First order implicit

Second order implicit

BDF2

Spectral

log10(|rel.error|)

log2(nT )

3-dimensional

Peter Jäckel Cluster Induction May 2018 74 / 117



4 The truth is implicit Some results

1Y composite option with Linear Gaussian Markov model and ncluster = 511.
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4 The truth is implicit Some results

1Y composite option with Linear Gaussian Markov model and nT = 16.
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5 Implementation and optimisations

Implementation and optimisations

Like with Libor market models, the real work starts with the implementation:-

How do we choose the shape parameters εj?

There is some research on this subject of variable practical applicability.

How do we generate the cluster?

There is little in the literature.

Generic optimisations, e.g.:

Pre-factorise matrices where possible and multiple (non-simultaneous) solu-
tions with different right-hand-sides are required.

Invoke Lapack’s “solve-with-SVD” routine instead of “give-me-the-full-SVD”
when you don’t actually need the SVD itself.

Peter Jäckel Cluster Induction May 2018 77 / 117

5 Implementation and optimisations How do we choose the shape parameter?

When ε is too large, the approximation diverges: the RBFs are then too
localised to genuinely interpolate between cluster nodes.

When ε is too small, the linear system starts to suffer from subtractive
cancellation and becomes numerically unsolvable. The system’s matrix
condition number diverges.

The sweet spot tends to be when the reciprocal matrix condition number
approaches machine precision.
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5 Implementation and optimisations How do we choose the shape parameter?

On the influence of the shape parameter on the accuracy, e.g., see:-

figures 2 and 3 in [CS09].

figures 11 and 13 in [Mil14].

figures 2.3 and 7.4 in [FZ07].

figures 5.1, 5.2, 5.3, 7.1, 7.2, and 7.3 in [FM12].

figures 22, 26, and 27 in [Fas11].

figure 3.1 b) and 4.2 in [FF15b].

figure 2 in [SL16].

figure 5.2 in [Wan14].

figures 2, 4 and 6 in [LF03].

figures 4–8, 10–12, and 14–17 in [Mon11] (my favourite).
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5 Implementation and optimisations How do we choose the shape parameter?

Figures 12 and 14 from [Mon11]:

using Gaussian RBFs,
the matrix Φ is ...

numerically singular

positive definite

optimum

Figure 12 [Mon11]. Figure 14 [Mon11].

The optimum shape parameter ε tends to be near the point where the kernel
matrix Φ becomes singular, i.e., where κ(Φ)−1 & DBL_EPSILON.
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5 Implementation and optimisations How do we choose the shape parameter?

Various methods have been suggested for (semi-)automatic choice al-
gorithms for ε such as ’Leave-one-out-cross-validation’ (LOOCV), but, for
our industrial application purposes, none of them appear to be anywhere
near robust enough for commercial use.

I found that choosing each εj , to some extent, with a global cap and
floor, based on the reciprocal distance to its near(est) neighbour(s) gives
a significant improvement.

Interestingly, there is disappointingly little discussion of this observation
of mine in the literature, (arguably) the sole noteworthy exception being
“The Runge phenomenon and spatially variable shape parameters in RBF
interpolation” [FZ07]. Quote:

The conditioning of the A-matrix is likely to be greatly improved
when using spatially variable εk.

The conditioning of the A-matrix is not the only benefit, but I am glad I
found at least some literature in support of my findings.
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5 Implementation and optimisations How do we choose the shape parameter?

An unexplored idea:-

Instead of merely demanding that the equation

φ(x)> · λ̇(t) + Lφ(x)> · λ(t) = 0 , (4.5)

holds in all of the radial basis function centres, to arrive at the ODE

Φ · λ̇(t) + LΦ · λ(t) = 0 , (4.8)

with square matrix Φ,

we oversample equation (4.5), i.e., ask for it to hold (as best as possible)
in an additional set of (somehow, arbitrarily) chosen locations.
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5 Implementation and optimisations How do we choose the shape parameter?

Applying this to whichever chosen specific time-integration scheme, this
results in an overdetermined system of the form

A(ε) · λ = r . (6.1)

Next, we demand that the RMS error of this overdetermined system is
minimized over both λ and ε, which gives us the non-linear system

A> ·A · λ−A> · r = 0

λ> ·A> ·A′ · λ− r> ·A′ · λ = 0
(6.2)

where
A′ =

dA(ε)

dε
.
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5 Implementation and optimisations How do we choose the shape parameter?

Solving this non-linear system is obviously some numerical effort.

And it may require safeguarding against its Jacobian becoming singular!

One may not want to do this for each and every time step.

One could attempt to solve it at every payment date, to capture the
contribution of each payoff,

and freeze ε over subsequent (regular) time steps where we’d only use the
regular, i.e., square, matrix Φ.

To be tested...
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5 Implementation and optimisations Cluster generation

How do we generate the cluster?

Sadly, most research is done in just 1 dimension ! (!!!)

There is little in the literature for more than 2 dimensions, up to which
researchers tend to use fairly regular point distributions.

A transfer of ideas from finite element methods is appealing.

Only that little is out there for more than 3 dimensions, and effective
(adaptive) tesselations for FEM tend to be specialised for 2 dimensions.

Quote [FF15a]:

In 2-D: Quick to go from quasi-uniform nodes to well-balanced Delaunay
triangularization.

In 3-D: Finding good tetrahedral sets can even become a dominant cost.
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5 Implementation and optimisations Cluster generation Prof. Sobol’ to the rescue!

A pragmatic approach:

In d dimensions, draw Sobol’ vectors and transform them from uniform to
Gaussian coordinates via the inverse cumulative normal function.

Gaussian Sobol’ vectors

We use these as our standardised ξ-coordinate cluster nodes.

If you wish, combine with further cluster improvement techniques...
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5 Implementation and optimisations Cluster generation Cluster pruning

In analogy to conventional (explicit) trees and (multivariate) quadrature
methods [BW04, Jäc05], we may wish to avoid having any nodes at ξ-
coordinates that in a one-dimensional standard normal distribution we would
describe as lying in the tail beyond a certain number of standard deviations,
say n standard deviations.

Since a one-dimensional normal distribution has two tails, this gives us that
we demand

|ξ| ≤ r∗ (6.3)

with
1− χ2(r∗ 2 ; d) = 2 · Φ(−n) (6.4)

where Φ(·) is here the normal distribution and χ2(·; d) the distribution of
the sum of the squares of d independent standard normal variates1.

We simply drop all drawn Gaussian Sobol’ vectors that lie outside r∗.

1The inverse χ2 function can be evaluated as a special case of the inverse Gamma
distribution function for which there is an extremely efficient implementation [DM87].
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5 Implementation and optimisations Cluster generation Cluster pruning

The pruning radius r∗ as a function of dimensionality d
and Gaussian standard deviations n.
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5 Implementation and optimisations Cluster generation Latin-Hypercubing

Latin-Hypercubing of the (perhaps pruned) cluster appears to help (in general):-

For each dimension j from 1 to d, individually,

sort the whole cluster by the j-th dimension (excluding the central node),

and replace all the elements in the j-th dimension by standardised,
(probability-)equidistant values (excluding the origin).

This used to be popular with pseudo-random Monte Carlo simulations before
Sobol’-sampling superceded conventional Monte Carlo methods2.

2Sobol’ sampling has an approximate, asymptotic, version of the Latin hypercube built
into it which obviates explicit Latin-Hypercubing.
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5 Implementation and optimisations Cluster generation Pruning and Latin-Hypercubing
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5 Implementation and optimisations Cluster generation Pruning and Latin-Hypercubing
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5 Implementation and optimisations Cluster generation Pruning and Latin-Hypercubing
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5 Implementation and optimisations Cluster generation Elastic Cluster Relaxation

As we saw, even with Latin-Hypercubing we may still have an unpleasantly
irregular distribution of the cluster nodes.

One way to regularise the cluster further is Elastic Cluster Relaxation:-

1 Identify the outer nodes. These are the vertices of the convex hull.
Consider these nodes, plus the origin (the spot node), as fixed.

2 Create a suitable point-to-point set of connections to form an (irregular)
web over the cluster nodes.

3 Interpret the edges of the web as perfectly elastic springs, with all nodes
(except those that were fixed) being only defined as vertices of the web
by its topology.

4 Relax the web!
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5 Implementation and optimisations Cluster generation Elastic Cluster Relaxation

In practice, the trickiest part of this procedure is step 2.

A good candidate for the web generation is the Delaunay triangulation,
which happens to be the “dual” of the Voronoi tesselation.

The good news is that there is published software out there for the calcu-
lation of both the convex hull and the Delaunay triangulation in arbitrary
dimensions (in principle) [BDH96].

The bad news is that the computational effort for the Delaunay triangu-
lation grows like

4d .

In a numerical experiment for 127 nodes, I was able to obtain the Delaunay
triangulation up to 9 dimensions (though it took hours towards the end).

In 10 dimensions, I gave up after one week.
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5 Implementation and optimisations Cluster generation Elastic Cluster Relaxation

The relaxation result is given by the minimisation of the total elastic spring
energy

E = 1
2

∑
(i,j)∈T

∣∣ξi − ξj∣∣2 (6.5)

where T is the set of point index tuples that comprises the Delaunay trian-
gulation over the variation of all the mobile vertices’ coordinates.

The resulting linear system for the movable nodes separates into d identical
individual positive definite3 linear systems, one for each dimension.

Let’s see what this does for the ugly cluster shown on page 92 !

In fact, we’ll do it twice since a repetition of the Delaunay triangulation after the first relaxation

is not guaranteed to result in the same topology.

3This is easy to see since the energy can be written as

1
2
|D · Ξ|2 = 1

2
Ξ> ·

(
D> ·D

)
· Ξ (6.6)

where D is a matrix whose rows each represent the distance calculation for one triangu-
lation edge and Ξ is the matrix of the cluster coordinates.
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5 Implementation and optimisations Cluster generation Elastic Cluster Relaxation
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5 Implementation and optimisations Cluster generation Elastic Cluster Relaxation
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5 Implementation and optimisations Cluster generation Elastic Cluster Relaxation
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5 Implementation and optimisations Cluster generation Elastic Cluster Relaxation
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5 Implementation and optimisations Cluster generation Minimum Distortion Cluster

Consider that each point x ∈ Rd is represented by its nearest cluster node

x → ξk̂(x;C) (6.7)

with
k̂(x; C) := arg min

k∈{1,..,N}
|x− ξk| (6.8)

where N is the number of nodes in the given cluster C = {ξ1, ..., ξN}.

Then, we call the expectation

D(C) := E

[∣∣∣x− ξk̂(x;C)

∣∣∣2] (6.9)

the average distortion [PD51] of C’s representation of Rd.

Since we operate with x to represent independent asset factors, we take the expectation
under a multi-variate standard normal distribution for x (with zero correlation).
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5 Implementation and optimisations Cluster generation Minimum Distortion Cluster

An image says more than a thousand words to explain the name “distortion” :
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5 Implementation and optimisations Cluster generation Minimum Distortion Cluster

A classical result in statistics is that the distortion D(C) is minimal when

ξk · E
[
1{k̂(x;C)=k}

]
= E

[
x · 1{k̂(x;C)=k}

]
(6.10)

for all k ∈ {1, .., N}.

This is to say that ξk must be equal to the first moment of x conditioned
on the domain of all points in Rd whose nearest cluster node is ξk.

We call the cluster C∗ that satisfies (6.10) the Minimum Distortion Cluster
though it is better known as the

Centroidal Voronoi Tesselation4 .

4Some authors in mathematical finance have unfortunately referred to such a choice of
nodes simply as a “quantization” which is not in line with the rest of mathematics, physics,
and engineering, where a quantization only indicates the representation of a continuum
by a subset of discrete values, without any statement about the rule that led to the choice
of nodes.
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5 Implementation and optimisations Cluster generation Minimum Distortion Cluster

Due to the considerable geometrical complications, there is in practice no
competitive analytical method to compute C∗ when d is more than two(-ish).

A simple algorithm attributed to Lloyd [Llo57] is to iterate

ξk
(n+1) :=

E

[
x·1{k̂(x;C(n))=k}

]
E

[
1{k̂(x;C(n))=k}

] = E
[
x
∣∣∣k̂(x; C(n)) = k

]
. (6.11)

This algorithm is also known as Voronoi iteration or Voronoi relaxation.

Again, in more than two (or so) dimensions, it is not practical to compute
the conditional expectations in (6.11) (semi-)analytically whence we resort
to a good old-fashioned Sobol’-Monte-Carlo evaluation5.

5Once more, unfortunately, some authors have referred to the numerical evaluation
of those conditional expectations by means of a sampling method as “stochastic” gradi-
ent descent methods despite the fact that none of the above has anything to do with
stochasticity or randomness or the concept of any [stochastic] process in time.
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5 Implementation and optimisations Cluster generation Minimum Distortion Cluster

The algorithm in a nutshell:
Precompute a d-dimensional sampling set of Gaussian Sobol’-Monte-Carlo
draws, say M =32767 points, xi for i = 1, ..,M .
Start with a d-dimensional initial cluster comprised by Gaussian Sobol’-
Monte-Carlo draws, say, of size N =255.

Then, in each iteration (of, say, 127), zero-out a workspace of N vectors
Ξk ∈ Rd, and zero-out N counter variables mk for k = 1, .., N and:-

Loop over all of the M sampling points xi for i = 1, ..,M to find the
nearest (previous) cluster node ξk̂

(n) and, having identified this nearest
cluster node index k̂ = k̂(xi, C(n)), set

Ξk̂ += xi

mk̂ += 1

Upon completing the loop over the sampling points (i = 1, ..,M), set

ξk
(n+1) := Ξk/mk

for k = 1, .., N .
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5 Implementation and optimisations Cluster generation Minimum Distortion Cluster

Notes:-

The outer iteration (6.11) may not converge (!). This is due to the discrete
underlying sampling set used to evaluate the conditional expectation.

The above mentioned non-convergence is nothing to worry about!
It simply means that the algorithm eventually just cycles over a discrete
set of equally good estimates for C∗ for the given size N , dimensionality
d, and Gaussian-Sobol’ sampling set.

The higher the dimensionality d, alas, the more outer iterations you will
wish to use to attain a satisfactory cluster.

Cache all computed clusters in memory for this run-time session since
more computations are likely to want the same! Caching it mitigates the
possibly considerable time it can take to create this cluster.

Peter Jäckel Cluster Induction May 2018 105 / 117

5 Implementation and optimisations Cluster generation Minimum Distortion Cluster

A good small cluster (N ≤ 255) wins over a large bad cluster.

You may want to grow the cluster N size gently with increasing dimen-
sionality d.

In higher dimensions, such optimum-representation cluster computation
techniques are part of a range of machine learning algorithms, e.g.,
“k-Means Clustering” .

You may find the oft-praised “Anderson acceleration” technique of little
practical use.

See Wikipedia [Llo18] for references to contemporary acceleration tech-
niques and to links as to how these methods are also used in finite element
calculations.
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5 Implementation and optimisations Cluster generation Minimum Distortion Cluster

For ncluster = 255, nsampling = 131071, ndim = 2, starting with:
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5 Implementation and optimisations Cluster generation Minimum Distortion Cluster

After 127 iterations, we arrive at:
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5 Implementation and optimisations Cluster generation Minimum Distortion Cluster

Here is an alternative (different algorithm, ∼3 times faster):
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5 Implementation and optimisations Cluster generation Minimum Distortion Cluster

1Y ATM composite option, Black-Scholes, ncluster = 255, nsampling = 32767.
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5 Implementation and optimisations Cluster generation Minimum Distortion Cluster

1Y ATM FX option, LGM model, ncluster = 255, nsampling = 32767.
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5 Implementation and optimisations Cluster generation Minimum Distortion Cluster

1Y composite option, LGM model, ncluster = 511, nsampling = 32767.
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6 Recent innovations and future work Local RBF-DQ (aka RBF-FD)

A recent development is to evaluate the spatial differential operator L in

∂tf + Lf = 0 (7.1)

on each cluster node not directly, i.e., analytically, on radial basis functions,
but as a weighted average of the function value over a judiciously chosen
nearby subcluster.

This was inspired by Bellman’s Differential Quadrature [BKC72, BM96].

In a nutshell:
A standard (spatial) finite-differencing method approximates, for instance,
the term ∂2f

∂x2
by a weighted sum of the function value at the central node

and its two nearby neighbours in the x-direction on a regular lattice:

∂2f

∂x2
≈ w1 · f(x−∆x) + w2 · f(x) + w3 · f(x+ ∆x) (7.2)
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6 Recent innovations and future work Local RBF-DQ (aka RBF-FD)

The weights are derived from a local Taylor expansion.

With the Taylor expansion being a polynomial expansion, this is tan-
tamount to demanding that the approximation is exact for the three test
functions f1(x) = 1, f2(x) = x, and f3(x) = x2.

This means the weights are derived from the linear system f1(x−∆x) f1(x) f1(x+ ∆x)
f2(x−∆x) f2(x) f2(x+ ∆x)
f3(x−∆x) f3(x) f3(x+ ∆x)

 ·
 w1

w2

w3

 =

 f ′′1 (x)
f ′′2 (x)
f ′′3 (x)


(7.3)

Bellman’s Differential Quadrature is the extension of this concept to all the
nodes in the lattice line using a complete set of polynomial test functions
to the maximum order attainable.

As usual, Chebyshev polynomials turn out to be very useful.
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6 Recent innovations and future work Local RBF-DQ (aka RBF-FD)

RBF-DQ [Tol00, WS02, TS03] is the translation of this idea to:-

focus on the full differential operator Lf monolithically without splitting
it into individual derivative terms.

make the test functions radial basis functions centered in the nodes.

Local RBF-DQ [SDY03] then:-

evaluates the differential operator Lf on any one node only by weighting
the function values over judiciously selected nearby supporting nodes.

use only the RBFs centered in the supporting nodes as test functions.
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6 Recent innovations and future work Local RBF-DQ (aka RBF-FD)

Alas,

people have started calling this localised derivative collocation technique
by the name “RBF-FD”.

This was meant to help conjure up the notion of a local stencil for the
evaluation of Lf .

But as we clearly see, this method has nothing to do with the calculation
of “finite differences” .

“RBF-FD” is a misnomer just like the abhorrent term “quasi-random”.
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6 Recent innovations and future work Local RBF-DQ (aka RBF-FD)

Caveat emptor:-

All that was previously said about radial basis functions still applies!

This includes the need for a suitably sized shape parameter,

the need to choose among the many RBF types, and so on.

In addition, one needs to choose the local stencil for each and every node!

And even in 2 dimensions this may be as large as 37 nearby nodes [FF15a].

However, there is a lot of promising research on Local RBF-DQ methods!

And by virtue of its locally dispersed support nodes for Lf , it may even

permit the use of explicit time integration schemes!

It remains to be seen...

THE END
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A Spectral analysis of Gaussian RBFs

With φ(r, ε) = e−(εr)2 , we obtain for Φ (with ε = 3):
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A Spectral analysis of Gaussian RBFs

Gaussian Φ−1 matrix:
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A Spectral analysis of Gaussian RBFs

The spectrum of the Gaussian Φ matrix:
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A Spectral analysis of Gaussian RBFs

The first three harmonic modes of Φ and their eigenvalues:
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A Spectral analysis of Gaussian RBFs

The Nyquist mode of Φ:
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A Spectral analysis of Gaussian RBFs

And all other modes of Φ in between:
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A Spectral analysis of Gaussian RBFs

LΦ for a standard diffusion:
ε = 3, σ = 0.25
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A Spectral analysis of Gaussian RBFs

The generator matrix G = LΦ · Φ−1:
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A Spectral analysis of Gaussian RBFs

The (backward) propagator e∆t·G over actual ξ coordinates (with ∆t = 1):
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A Spectral analysis of Gaussian RBFs The generator’s spectrum

The spectrum of the Gaussian generator matrix G = LΦ · Φ−1:
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A Spectral analysis of Gaussian RBFs The generator’s spectrum

The first four modes of G and their eigenvalues:
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A Spectral analysis of Gaussian RBFs The generator’s spectrum

The Nyquist mode of G:
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A Spectral analysis of Gaussian RBFs The generator’s spectrum

And all other modes of G in between:
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A Spectral analysis of Gaussian RBFs The generator’s spectrum

And finally, the first order scheme stabilities with ∆t = 0.25:
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