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Abstract

We present a practical method for the interpolation of implied Black volatility

designed to avoid spurious arbitrage even for extreme or marginal inputs.

1 Introduction

Forty years ago, Fischer Black and Myron Scholes published their article on what is

now known as the Black-Scholes-Merton formula for the valuation of plain vanilla op-

tions [BS73] on equities. Four years later, Fischer Black showed that essentially the same

formula, but based on the forward instead of the spot value of the underlying, can be ap-

plied to vanilla options on pretty much any underlying financial observable class1. Since

then, option traders worldwide have been expressing and comparing option prices in terms

of their implied Black volatilities. One of the many reasons of convenience for doing so

is that, when expressed as implied volatility, option prices can be compared easily across

different strikes without having to do some kind of non-linear adjustment for the money-

ness of the contract. The implied volatility for any given strike is a direct measure for the

relative uncertainty associated with that contract. After all, uncertainty, in a manner of

speaking, is what the word volatility actually means in plain English. Ironically, various

authors in mathematical finance have taken this custom of expressing option prices as im-

plied volatilities by trading practitioners to indicate that traders believe that some kind

of mathematical process volatility is a certain constant for the life of that contract struck

at its own specific strike, whilst it is a different constant for other strikes, and have used

this as a criticism of the Black-Scholes-Merton formulation. In reality, though, traders

∗Deputy head of Quantitative Research, VTB Capital

Key words and phrases. implied volatility interpolation, arbitrage-free.
1Fischer Black’s article [Bla76] was actually written specifically on commodities but the Black formula

was very soon adopted across all asset classes.
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express option prices as implied volatilities precisely because they know very well that

there are no constants, in order to compare different levels of riskiness across strikes on a

like-for-like scale.

Nowadays, the use of implied volatility extends to the marking of implied volatility

surfaces in aid of being able to value large portfolios of option positions across a diverse

range of strikes and expiries. For this purpose, in practice, implied volatility tends to

be interpolated both in the strike direction, and along the expiry axis. This is a process

fraught with danger since the conditions on avoiding arbitrage in the form of implicit

negative calendar spread or butterfly prices are, when expressed as constraints on the

functional form of implied volatility, both non-linear and non-trivial. Even if we focus only

on interpolation in the strike direction, somewhat surprisingly, there is very little literature

and research on the subject of implied volatility interpolation. One viable approach is

to use a parametric form for the density resulting from the concept of maximum entropy

subject to the constraint of matching the given data points for implied volatility [Ave98,

HB04, BK96]. The parametric form for the density is then piecewise exponential, and

calibration to the input data requires a multi-variate numerical fitting procedure. Whilst

intellectually very appealing, this approach is somewhat limited in the shapes it can

attain due to the piecewise exponential nature of the density function. An alternative was

proposed in [Kah04]. That approach is more akin to a conventional interpolation method.

Being based on a functional form that is written in terms of the option price formula, it is

essentially the addition of an affine function of the strike (not the log-strike!) to the Black

option price formula, and as a consequence, little control is retained about the shape

of interpolation in between nodes even if the input data would be perfectly amenable to

other, smoother, interpolation forms. In addition to that, the approach in [Kah04] heavily

relies on multivariate non-linear root finding (i.e., parametric calibration) and invariably

incurs all the associated potential issues such as costly evaluation, residual calibration

inaccuracy, and so on.

In this article, we present a procedure that retains, as much as possible, the simi-

larity to an originally chosen smooth interpolation method, but avoids arbitrage when

that original interpolation method would give rise to it. The new method still avoids

arbitrage even under marginal conditions such as when option prices are co-linear, thus

implying regions of zero density, whilst, in a manner of speaking, keeping the overall im-

plied volatility profile as smooth as possible. Importantly, the presented method is fully

analytic and requires no numerical calibration2 at any stage which we find desirable for

what is intended to be used as a parametric interpolation method.

2 The only arguable exception being the involved calculations of Black volatilities implied from prices,

though, this is also required in [Kah04], inside an outer calibration of their interpolation method. We

say arguable because the implied volatility calculation method in [Jäc13] attains maximum accuracy with

precisely two iterations and can for all intents and purpose be considered to be at least semi-analytical,

or possibly even as analytical as the cumulative normal function and its inverse.
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2 No-arbitrage conditions for implied volatility in-

terpolation across strikes

The (undiscounted) Black option formula can be written as

B(F,K, σ, θ) = θ ·
[
F · Φ

(
−θ ·

(
z
σ
− σ

2

))
−K · Φ

(
−θ ·

(
z
σ

+ σ
2

))]
(2.1)

where we have set the time to expiry to 1 without loss of generality, and defined

θ := ±1 for calls/puts (2.2)

and

z := ln(K/F ) . (2.3)

When volatility is a function of strike, i.e., σ = σ(K), the first and second derivative of

the vanilla option price

v(K) := B (F,K, σ (K) , θ) (2.4)

with respect to K are:-

v′(K) = K · ϕ
(
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+ σ
2

)
· σ′ − θ · Φ

(
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(2.5)

v′′(K) =
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)
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·

[
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Kσσ′ + 4K2σ3σ′′ +
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4z2 − σ4

)
K2σ′2

]
(2.6)

For there to be no arbitrage to be implied by the volatility function σ(K), it is necessary

for the second derivative, which is the risk-neutral Bronzin-Breeden-Litzenberger density

([Bro08, page 51, equation (17.a)], and [BL78])

ψBBL(K) = v′′(K) (2.7)

to be non-negative:

ψBBL ≥ 0 . (2.8)

Recasting equations (2.5) and (2.6) by the aid of the transformation

f(z) := σ(K)2 (2.9)

leads to

v′(K) =
f ′

2
√
f
· ϕ(ζ)− θ · Φ(−θ · ζ) (2.10)

v′′(K) =
ϕ(ζ)

4K
√
f
·
[
2f ′′ +

(
z · f ′

f
− 2
)2
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(

1
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+ 1
f

)]
(2.11)
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with

ζ :=
z√
f

+

√
f

2
. (2.13)

In order to obtain an intuition as to what the condition (2.8) means for asymptotically

high and low strikes, we substitute the affine form

lim
|z|→∞

f(z) ≈ a+ b · z (2.14)

into (2.11). This results in the requirement

b ≤ 2 (2.15)

and thus we must have the asymptotic behaviour

lim
|z|→∞

|f ′(z)| ≤ 2 (2.16)

which is one of the main results of R. Lee’s moment formula [Lee04]. Based on these

findings and the simpler form of (2.6) in comparison to (2.11), we generally prefer all

interpolation of implied volatility to be done explicitly in (z, f)-coordinates by the aid

of transformation (2.9) from the original data given in terms of (K, σ) pairs. As for

extrapolation, linear extrapolation of f(z) gives satisfactory results, and is asymptotically

sound as long as it is either flat or increasing with a linear coefficient of no more than 2

(in absolute value), though we will give the precise conditions for the extrapolation to be

free of arbitrage later in section 8.

In order to avoid arbitrage, any given interpolation method of the implied variance

function f(z) must satisfy

2f ′′ +
(
z · f ′

f
− 2
)2

− f ′2
(

1
4

+ 1
f

)
≥ 0 . (2.17)

Whilst this is in terms of symbolic complexity significantly more manageable than de-

manding that the right hand side of (2.6) be non-negative, it is still in practice effectively

intractable as a constraint to any interpolant. This is essentially the starting point of the

research presented in this article.

3 Interpolation of option prices

Denote C(K) as the (undiscounted) price of a call option struck at K. For a given

ordered set of strike/price pairs {(Ki, Ci)} for i = 1 · · ·n, augmented by the strike zero3

3We explain the somewhat esoteric reason for the need to add the zero strike data point to the option

price set in section 4.1.
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with associated put price of zero (and call price of F ), arbitrage is present in the data if

for any i either of

Ci > Ci+1 (3.1)

Ci−1

Ki−Ki−1

− Ci ·
(

1

Ki−Ki−1

+
1

Ki+1−Ki

)
+

Ci+1

Ki+1−Ki

≥ 0 (3.2)

fails to hold true. Any interpolation C(K) of the option price data generates spurious

arbitrage if either of the two conditions

C ′ < 0 and C ′′ ≥ 0 (3.3)

is violated. In section 4, we discuss further conditions that pose a situation of arbitrage

which need to be considered when input data are analysed and potentially filtered prior

to even attempting an arbitrage-free interpolation.

Remark 3.1. A marginal situation of arbitrage is the case when the call option price

C(K) for increasing K levels out at a positive number C(K∗) = Cmin > 0 at some critical

strike K∗, and remains constant thereafter, i.e.,

C(K) = Cmin ∀ K ≥ K∗ . (3.4)

This makes

C ′(K) = 0 ∀ K > K∗ . (3.5)

which translates equation (2.10) to

f ′

2
√
f
· ϕ(ζ)− Φ(−ζ) = 0 ∀ z ≥ z∗ := ln(K∗) . (3.6)

Substituting the asymptotic expression [AS84, equation 26.2.12] to first order

Φ(−|ζ|) ≈ ϕ(ζ)

|ζ|
·
(

1− 1

z2
+ . . .

)
(3.7)

for large z, we obtain the asymptotic ordinary differential equation

f ′ = 4f/(2z + f) (3.8)

which has the general solution in terms of the inverse function z(f)

z(f) =
f

2
− c ·

√
f (3.9)

for some constant c. This gives us the interesting result of the limiting asymptotic form

σ(K) = c+
√
c2 + 2 ln(K) (3.10)

for large K. Essentially the same result, apart from signs, can be obtained for K → 0 by

the aid of expressing put options as rescaled call options on the reciprocal of the under-

lying. We do not use these results in the following, but mention it in aid of appreciating

our choices of inter-, and particularly, extrapolation.
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Remark 3.2. Equation (3.9) implies

f ′ =

[
dz(f)

df

]−1

=
2

1− c/
√
f

(3.11)

and equally (without derivation) for put options apart from the sign, whence

lim
z→±∞

f ′ = ±2 (3.12)

for the limiting asymptotic form, as is of course to be expected from (2.16).

Returning to the consideration of option price interpolation, it is clear that any in-

terpolation C(K) method which, given strictly monotone and at least marginally convex

data {(Ki, Ci)}, preserves the conditions (3.3) will by construction be free of arbitrage.

We can therefore, in principle, design an implied volatility interpolant by transforming

all input implied volatilities first to call and, for strikes below the forward, put options

(to avoid roundoff truncation), respectively, interpolate on prices, and transform back

to volatilities by implication. This approach does of course require an efficient and ac-

curate implied volatility function that works even extremely far away from the money,

though, fortunately, that is readily available [Jäc13]. Secondly, we need an interpolation

that preserves monotonicity and convexity. For this purpose, we employ the rational cubic

method of Delbourgo and Gregory [DG85], specifically with their geometric mean method

of choosing the slopes at interpolation interval boundaries given in their equations (3.25)

and (3.26).

In principle, this route via option prices that are interpolated under observation

of (3.3), is perfectly viable. We show an example in figure 1, along with a conven-

tional interpolation of implied volatilities . Intriguingly, there appear to be some waves

when comparing to a conventional smooth implied volatility interpolation. Extending

the strike range in figure 2 demonstrates how bad this can get. We emphasize that the

generated waves are not an artefact of the choice of price interpolation method. In fact,

many other smooth (but not necessarily shape-preserving) interpolation methods such as

Akima splines, Catmull-Rom splines, or natural cubic splines, generate even worse ex-

amples, and very easily result in arbitrageable output as shown in figure 3. Clearly, the

spurious oscillations we see in figures 1 and 2 are undesirable, especially when implied

volatility should really be nearly flat. In other words, while shape-preserving interpolation

of prices is workable, it can be outright ugly, and would not be acceptable to any trading

practitioner.

4 Input data filtering

In practical applications, the data sets provided for the interpolation of implied volatilities

are frequently not filtered for stale data points, or marginal inaccuracies. Most frequently,
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Smooth implied volatility interpolation

Volatility implied from interpolated call prices

Input data

Figure 1: Interpolation of implied volatilities via transformation to call option prices and shape-

preserving interpolation for an arbitrary data set. The smooth reference interpolation is done as variance

over log-strike, i.e., as the function f(z), also with the rational cubic method of Delbourgo and Gregory.
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Smooth implied volatility interpolation

Volatility implied from interpolated call prices
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Figure 2: Same as figure 1 for a wider range of strikes.

this causes problems in the wings of the implied volatility profile. It is therefore, subject

to careful judgement as to the target usage, sometimes desirable to have a procedure

that recognizes all data points that are not viable for any given time horizon and thus

cannot be included in an arbitrage-free interpolation logic, and, depending on subjective

preferences, are either excluded from the data set, or give rise to an application exception

that flags a severe data error. A pragmatic approach is to distinguish between strictly

intolerable data points, and those that can be remedied as follows.
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Volatility implied from call prices interpolated with cubic splines
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Figure 3: Same data as in figures 1 and 2. This time, call option prices were interpolated with natural

cubic splines. Interpolated prices have no implied volatility for K/F ∈ [11, 14] giving rise to the associated

implied volatility curve dropping to zero in that range.

Removable violations

Starting with the leftmost strike, one may allow dropping all points {(Ki, σi)} to the left,

at which

� put options have non-positive value, i.e.,

Pi ≤ 0 , (4.1)

with Pi := P (Ki),

� the zero-strike-complemented put butterfly, i.e., an asymmetric put option butterfly

built over the strikes {0, Ki, Ki+1}, indicates that there is net no positive probability

in (0, Ki+1), i.e.,

P (0)

Ki − 0
− P (Ki)

Ki − 0
− P (Ki)

Ki+1 −Ki

+
P (Ki+1)

Ki+1 −Ki

≤ 0 , (4.2)

which, using P (0) ≡ 0, is equivalent to

PiKi+1 ≥ Pi+1Ki , (4.3)

tested in sequence and stopped when for some i no violations are found.

Next, starting with the rightmost strike, one may allow dropping all points {(Ki, σi)} to

the right, at which
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� call options have non-positive value, i.e.,

Ci ≤ 0 , (4.4)

with Ci := C(Ki),

� call options are not decreasing, i.e.,

Ci−1 ≤ Ci , (4.5)

tested in sequence and stopped when for some i no violations are found.

Strictly intolerable violations

Any interior data point {(Ki, σi)} for i = 2 · · ·n− 1 at which either

� put options are not increasing (for strikes below the forward), i.e.,

Pi ≥ Pi+1 for any i such that Ki < F , (4.6)

� or call options are not decreasing (for strikes above the forward), i.e.,

Ci ≥ Ci−1 for any i such that Ki > F , (4.7)

� or (asymmetric) put or call butterflies4 are negative, i.e.,

max
(

Pi−1

∆Ki−1
− Pi

∆Ki−1
− Pi

∆Ki
+ Pi+1

∆Ki
, Ci−1

∆Ki−1
− Ci

∆Ki−1
− Ci

∆Ki
+ Ci+1

∆Ki

)
< 0 (4.8)

with

∆Ki := Ki+1 −Ki (4.9)

can not be helped. Here, we must reject any attempt of arbitrage-free interpolation since

it simply cannot work.

4.1 A special case: put versus digital at the lowest strike

Subject to all of the above lateral removable violations having been filtered out, it is under

rare circumstances still possible to have arbitrage induced by an interaction between the

digital option price as implied by the (initially unmodified) interpolator of variance-over-

log-strike f(z) and the vanilla put option price at the lowest strikeK1. Denoting the digital

4For round-off reasons, it is advisable to test against the larger of the put and the call butterfly.
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put option as P ′1, with P ′ ≡ v′ to be computed via (2.10), this situation of arbitrage is

given when

K1P
′
1 < P1 . (4.10)

In this case, when the digital put option is too cheap relative to the vanilla put option,

one could construct a trade consisting of a short position in the put option struck at K1

and a long position in the digital struck at K1 with notional K1 such that the trade would

have upfront negative cost (i.e., generates upfront cash in putting on the trade), and at

maturity breaks even when the final spot ST meets ST = 0 or ST ≥ K1, and positive if

0 < ST < K1. In terms of risk-neutral probability, this situation indicates that either

there must be positive risk-neutral probability located at strikes less than zero, or, that

there is negative probability somewhere in (0, K1). In this case, we should clearly switch

to interpolation over (put) option prices on the interval [K1, K2], and have the digital put

option price at K1 governed by the price interpolator. We emphasize that this special

case must be checked for before any overall arbitrage-free interpolation correction logic as

described in the main text as of section 3, and this is why we list it here as part of the

initial filtering logic.

This is not the whole story yet, though. The violating condition (4.10) above can in

fact still arise for a perfectly good monotonicity and convexity preserving price interpo-

lation algorithm for perfectly good and viable put option prices. The reason is that it is

in this case left up to the interpolator’s internal logic to come up with an estimate as to

what v′(K1) should be, and, generically, the employed price interpolation algorithm, e.g.,

Delbourgo and Gregory’s rational cubic method, does not have the avoidance of this spe-

cific arbitrage situation built into it. If, however, we add the zero-strike put option with

zero value to the set of put option prices over which we interpolate, then, the described

situation can no longer arise if the price interpolator strictly preserves monotonicity and

convexity! This is the reason why we mandated at the beginning of section 3 that all price

interpolation must be augmented by the zero strike (and zero value for the put option

struck at zero) in order to anchor the price interpolator sensibly.

5 Clamped interpolants

For there to be no spurious arbitrage to be generated by any interpolation, whether that is

as interpolation of prices or as interpolation of variances, the interpolator should produce

a function that is of class C1, i.e., continuously differentiable. The second derivative, how-

ever, does not have to be continuous — it merely must not jump too much to violate the

condition that the density must not be negative at any point. With this in mind, we now

construct an interpolant that, preferably, interpolates variances over log-strikes smoothly,

but on any interval where this leads to negative densities, switches to interpolation of

prices over strikes. The crucial point is to connect the two interpolators at the transitions
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such that implied volatility is not only continuous, but also continuously differentiable.

In terms of conventional literature, this means we not only pin down the interpolators at

the abscissa/ordinate node pairs where a switch occurs, but we also clamp them in the

sense that we enforce the local slope at the transition node.

Since natural cubic splines are of class C2, giving rise to continuous Bronzin-Breeden-

Litzenberger densities, we prefer to use those when we interpolate f(z), i.e., variances

over log-strikes. Traditionally, natural cubic splines are usually only documented with

the possible external specification of imposed slope values at their end points [PTVF92].

It is of course straightforward to extend this concept to the clamping at interior nodes

by viewing the full cubic spline with internal node slope conditions as a sequence of sub-

splines, clamped at the internal nodes at which the slope needs to be explicitly specified,

instead of automatically generated by the spline. We show an example for clamped natural

cubic and rational cubic splines in figures 4, 5, and 6 for some arbitrary interpolation data.

The clamping causes the second derivative locally to jump, but we will later ensure that

0
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Clamped CubicSpline
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Clamped RationalCubic
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Data
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Figure 4: The clamping of splines.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Free CubicSpline (slope)
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Figure 5: The first derivative of the splines in figure 4.
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Figure 6: The second derivative of the splines in figure 4. Note the discontinuity at the clamping

location (0.6) for both the clamped cubic and the clamped rational cubic spline.

the associated Bronzin-Breeden-Litzenberger density never jumps to negative values. As

for the interpolation of option prices, we use the aforementioned shape-preserving rational

cubic method of Delbourgo and Gregory. We emphasize that all option price interpolation

is always done in duplicate: once for calls, and once for puts, and on any segment where

interpolation in prices is to be queried, the choice for whether to use the calls or the puts

is given by the moneyness of the segment to avoid the roundoff truncation that would be

incurred when deeply in the money options are used to imply volatilities.

6 Continuous arbitrage detection

Given a set of discrete normalised log-strikes {zi} with zi = ln Ki
F

, and associated variances

{fi} with fi = σ(Ki)
2, and a chosen interpolation method for f(z) which we prefer

to be natural cubic splines, we need to identify all intervals Ij := [zj, zj+1] on which

the interpolator f(z) implies arbitrage. Since it is analytically intractable, or at least

inefficient, to compute a closed form condition that ensures that the density does not dip

below zero inside any interval, even when we have the interpolator f(z) given in explicit

form as a cubic polynomial, we use local approximations for the sake of robustness and

numerical expediency. For any interval Ii, we carry out the following procedure.

a) From equation (2.10), ensure that we have

0 ≤ v′(K) ≤ 1 , (6.1)

with v(K) denoting put option prices (meaning, θ = −1), at both ends of the

interval, i.e., at Ki, and Ki+1, by analytical evaluation of f(z) and f ′(z). The

violation of (6.1) represents negative digital option prices which can happen even

when the density at the same strike is positive. In fact, this happens almost as a

rule for the SABR parametric form [HKL02, equation (2.17a)] when calibrated to
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interest rate swaption prices for some small interest rate strike range near 1 basis

point.

b) Compute the left-hand-side and right-hand-side limits of the density

ψl := limz↘zi(ψBBL) (6.2)

ψr := limz↗zi+1
(ψBBL) (6.3)

by the aid of ψ = v′′(K) and equation (2.11). This is to be done by analytical

evaluation of the respective limits for f(z), f ′(z), and, importantly, f ′′(z), inside

the interval Ii. We emphasize the last point since, even though the interpolator

f(z) will always remain of class C1, it is possible that the value f ′′(z) jumps at

the interval boundary, either because the original interpolation method was not C2

to start with, or because an earlier correction stage already resulted in a clamping

of f(z) at either boundary. We will come back to this latter issue at the end of

section 7.

c) Compute the log-mid-point density

ψm := ψBBL(Km) (6.4)

with

Km := F · e
1
2

(zi+zi+1) (6.5)

also analytically from equation (2.11).

d) Denoting Kl := Ki and Kr := Ki+1 for easier association to the left and right hand

side ends of the interval, compute the slope of the density at Kl, Km, and Kr using

ψ′l = v′′′(Kl) , ψ′m = v′′′(Km) , ψ′r = v′′′(Kr) (6.6)

and (2.12) from the variance-over-log-strike interpolator f(z). Next, assess if there is

a local minimum of the density, and estimate its location, separately on both halves

of the interval. First, fit a cubic form for the density function to the locations,

levels, and slopes for the left half given by (Kl, ψl, ψ
′
l) and (Km, ψm, ψ

′
m). Compute

the locations of the extremums of this cubic form. If there is a minimum, and its

location K∗l is inside the subinterval [Kl, Km], then evaluate the density ψBBL(K∗l )

analytically from equation (2.11). If the density ψBBL(K∗l ) is positive (and all is well

still), proceed to the right half interval with exactly the same check based on the

locations, levels, and slopes (Km, ψm, ψ
′
m) and (Kr, ψr, ψ

′
r). If the respective cubic

form for the right half interval suggests the existence of a local minimum at K∗r ,

evaluate the density ψBBL(K∗r ) analytically from equation (2.11).

If any of the explicitly computed density check values are negative, the interval Ii is marked

as defective for subsequent corrective action by interpolator switching as is discussed in

the next section.
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7 Smooth connections

Given an initial smooth (at least C1) interpolator f(z) of variances over log-strikes, for

any interval Ii := [zi, zi+1] (with zi := ln Ki
F

and zi+1 := ln Ki+1
F

) that was identified as

defective in the sense that the density implied by f(z) is negative somewhere in Ii, we

decide whether for price interpolation on this interval we wish to use call or put option

prices. In practice, we use call options if 1
2
(Ki + Ki+1) ≥ F , i.e, if the mid-point is at or

above the forward. In notation, we define the call/put indicator flag θi for Ii as

θi := 2 · 1{ 1
2

(Ki+Ki+1) ≥ F}− 1 (7.1)

and set the vanilla price v(K) on K ∈ [Ki, Ki+1] as

v(K) := B(F,K, σ(K), θi) ∀ K ∈ [Ki, Ki+1] . (7.2)

We now compute the vanilla price slope values on the boundaries of the interval implied

by the variance-over-log-strike interpolator f(z) as

d̃j :=
f ′(zj)

2
√
f(zj)

· ϕ(ζj)− θi · Φ(−θi · ζj) (7.3)

with

ζj :=
zj√
f(zj)

+

√
f(zj)

2
. (7.4)

for j = i and j = i + 1. At this point, we must pay attention to the fact that the

above computed interval boundary price slope quantities d̃i and d̃i+1 are not guaranteed

to preserve the convexity condition

d̃i ≤ ∆i ≤ d̃i+1 (7.5)

with

∆i :=
v(Ki+1)− v(Ki)

Ki+1 −Ki

(7.6)

in the notation of Delbourgo and Gregory. Pragmatically, we allow falling back to the

slope that can be computed directly from the (so far unclamped) price interpolator v(K)

by setting

di :=

{
d̃i if d̃i ≤ ∆i

v′(Ki) else
(7.7)

and

di+1 :=

{
d̃i+1 if ∆i ≤ d̃i+1

v′(Ki+1) else
. (7.8)
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We then add the conditions

v′(Ki)
!

= di (7.9)

v′(Ki+1)
!

= di+1 (7.10)

to the price interpolator for v(K), thus clamping it in Ki and Ki+1 to slope values that

make it consistent with the variance interpolator f(z) in both price and slope at the

interval boundaries. This is of course only strictly true if the convexity condition (7.5) held

to start with: if either d̃i ≤ ∆i or ∆i ≤ d̃i+1 was not met, then, at the respective interval

boundaries, the price interpolator just retained its own original slope! To remedy this not

uncommon situation when the original price interpolator slope prevailed at either side,

we adjust the variance interpolator’s slope at the respective boundary instead. Specifically,

� if d̃i > ∆i, we add the condition

f ′(zi)
!

= 2 · (di + θiΦ (−θi · ζi))
√
f(zi)

ϕ(ζi)
(7.11)

and

� if ∆i > d̃i+1, we add the condition

f ′(zi+1)
!

= 2 · (di+1 + θiΦ (−θi · ζi+1))

√
f(zi+1)

ϕ(ζi+1)
(7.12)

to the variance interpolator f(z), thus clamping the variance-over-log-strike interpolator

f(z) to the price interpolator.

It will not have escaped the attentive reader that the above reverse clamping of the

variance-over-log-strike interpolator f(z) at either boundary zi or zi+1 can give rise to the

interpolator f(z) now implying negative densities on some other intervals that previously

passed the checks described in section 6. For all interpolation types, this can immediately

happen in the intervals adjacent to Ii if those were previously deemed fit for interpolation

via f(z). For non-local interpolation methods, i.e., those that attain class C2 by the

aid of global calculations, the change of slope in any point can give rise to changes in

any other interval which, in turn, now may imply negative densities. It does indeed

happen that other intervals end up being affected by negative densities following the first

correction stage. This, however, is easily taken care of by applying an outer iteration to

our construction logic to repeat the stages of sections 6 and 7 in sequence until no new

intervals are identified requiring adjustments because of negative densities. This sounds

worse than it is in practice. Even for extreme data we have not seen the need for more

than one extra iteration of the correction stage after the initial pass. In theory, it could of

course lead to the whole sequence of intervals all being interpolated via prices, but if this

does indeed happen for some extreme data, we still have an arbitrage-free interpolation,

which is so much better than the alternative in this case, namely, an interpolation that

implies negative densities somewhere in all its interior intervals.
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8 Extrapolation

We mentioned previously that linear extrapolation of f(z) gives satisfactory results. In

this section, we want to qualify this statement further. We focus on extrapolation for

high strikes, i.e., the extrapolation in z beyond some endpoint zr. Linear extrapolation

beyond the last interpolation node (zr, fr) can be written as

f(z) = a+ b · z ∀ z > zr . (8.1)

If we consider the last value for in the endpoint, i.e., fr = f(zr) , as non-negotiable, then

the only free variable is the extrapolation slope b. The parameter a is then given by

a = fr − b · zr . (8.2)

Substituting (8.1) into (2.11), and demanding that the Bronzin-Breeden-Litzenberger

density be positive gives

ω(z) > 0 (8.3)

with

ω(z) := [b · z − 2 · f(z)]2 − b2 · [1 + f(z)/4] · f(z) (8.4)

where we have made the assumption that f(z) > 0, which is probably safe. The function

ω(z) is a second order polynomial in z whose quadratic coefficient is b2(4− b2). Since we

already know from equation (2.15) that we must have b < 2, the quadratic form in (8.4)

will always have a global minimum at

zmin =
(2 + a)b2 − 8a

b(4− b2)
(8.5)

which is finite because 0 < b < 2. Substituting (8.2), we can compute that the location

of the minimum of ω(z) is to the left of zr if

b < b̃r (8.6)

with

b̃r :=

√
z2
r + 2f 2

r + 4fr − zr
1 + fr/2

, (8.7)

which is always positive. When zmin > zr, and the minimum of ω(z) is therefore in the

extrapolation domain, then

ω(zmin) =
(
a · (4− a)− b2

)
· b2

4− b2
(8.8)

is positive if

4fr − f 2
r + 2zr(fr − 2) · b − (1 + z2

r ) · b2 > 0 (8.9)

where we have again substituted (8.2). Condition (8.9) can be reexpressed as

∆r > 0 and b < b̂r (8.10)
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with

∆r := 4z2
r − f 2

r + 4fr (8.11)

and

b̂r :=
(fr − 2)zr +

√
∆r

1 + z2
r

. (8.12)

We are now in a position to state the condition on b concisely. Linear extrapolation

beyond the endpoint (zr, fr), i.e., for z > zr, is free of arbitrage if the digital option price

and the Bronzin-Breeden-Litzenberger density at zr are free of arbitrage, and

0 ≤ b < min(bmax, 2) (8.13)

with

bmax :=

{
max(b̃r, b̂r) if ∆r > 0

b̃r else .
(8.14)

With respect to extrapolation to the left hand side in z below the point (zl, fl), i.e., for

z < zl, we obtain with

f(z) = a+ b · z ∀ z < zl . (8.15)

the formulae

b̃l := −
√
z2
l + 2f 2

l + 4fl + zl
1 + fl/2

(8.16)

∆l := 4z2
l − f 2

l + 4fl (8.17)

b̂l :=
(fl − 2)zl −

√
∆l

1 + z2
l

(8.18)

and

bmin :=

{
min(b̃l, b̂l) if ∆l > 0

b̃l else .
(8.19)

Extrapolation for z < zl is free of arbitrage if the digital option price and the Bronzin-

Breeden-Litzenberger density at zl are free of arbitrage, and

max(bmin,−2) < b ≤ 0 . (8.20)

In practice, we have observed that, when the respective discrimant ∆(·) is positive, it

is rare for the associated value b̂(·) to exceed the corresponding value b̃(·) (in absolute

value). Since b̃(·) is the limiting value for the slope at the extrapolation boundary for

which the density is already negative at the very boundary edge itself, the fact that linear

interpolation in f(z) has its limits (due to the fact that the density may become negative

for some much higher strike) is in practice not really an issue. It just doesn’t happen. The

main limits on the extrapolation slope of f(z) are given by the restrictions on f ′(z) on

the boundary to extrapolation in the form of the conditions (3.3) with (2.10) and (2.11).
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8.1 Log-linear factor extrapolation

There is an alternative to linear extrapolation in variance-over-log-strike that is free of

arbitrage by construction, and typically leads to a more rapid levelling out of implied

volatilities for strikes far away from the money. This extrapolation method is based on

the representation of the underlying financial variable as given by a quantile map [Jäc05]

of a standard normal variate.

Consider that the distribution of the spot variable S is generated by virtue of a map-

ping function χ(y) that maps a standard normal variate y to the logarithm of S, i.e.:

S = F · eχ(y) . (8.21)

The quantile map χ(y) must of course satisfy the forward for the underlying:

1 =

∫
eχ(y)ϕ(y)dy . (8.22)

The quantile map representation is a common approach to generate a distribution for S

that matches a given implied volatility smile by construction [Jäc05]. In any practical

implementation, the quantile map χ(y) is represented by an interpolation methodology

over a chosen discrete set of values for y, and, typically, combined with linear extrapolation.

We write for the linear extrapolation rule of χ(y) beyond the last strike the form

S/F = eα+β·y . (8.23)

For a put option struck at a strike K below the extrapolation point Kl = F · eαl+βl·yl , we

readily compute from (8.23) the analytical value

v(K) = K · Φ(yK)− F · eαl+
1
2
β2
l · Φ(yK − β) (8.24)

with

K = F · eαl+βl·yK ⇐⇒ yK = [ln(K/F )− αl] /βl (8.25)

In order to obtain the extrapolation coefficients αl and βl, we make use of the price vl of

the put option struck at the extrapolation boundary Kl as given by the variance-over-log-

strike interpolator f(z) and the Black formula. Also, from (2.10), we can compute the

digital put option price which, by definition of the quantile map, is equal to Φ(yl), i.e.,

v′(Kl) = Φ(yl) (8.26)

and thus we also have

yl = Φ−1 (v′(Kl)) . (8.27)

Given the put option price vl, the digital put price Φ(yl), and the threshold value yl, we

need to solve the system of equations (8.24) and (8.25) for αl and βl. This reduces to

solving

Φ(yl)− vl
Kl

= e
1
2
β2
l −βl·yl · Φ(yl − βl) . (8.28)
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Substituting ηl := yl − βl, and taking the logarithm, we arrive at

1
2
η2
l + ln (Φ (ηl)) = ln

(
Φ(yl)− vl

Kl

)
+ 1

2
y2
l . (8.29)

Noting that all the terms on the right hand side are known, and subsuming them into

some constant c, finding ηl amounts to solving an equation of the form

1
2
x2 + ln(Φ (x)) = c (8.30)

which we call the quantile slope equation. We show in appendix C how this can be done

semi-analytically with little numerical effort. Once we have found ηl, we obtain

βl = yl − ηl (8.31)

αl = ln(Kl/F )− βl · yl . (8.32)

For extrapolation above the last interpolation node at Kr, we omit the derivation and

merely state that, given the call option price vr struck at Kr, the digital call price

−v′(Kr) = Φ(−yr), and the threshold value yr = −Φ−1(−v′(Kr)), we need to solve

1
2
η2
r + ln (Φ (ηr)) = ln

(
Φ(−yr) + vr

Kr

)
+ 1

2
y2
r (8.33)

for ηr, and have

βr = yr + ηr (8.34)

αr = ln(Kr/F )− βr · yr . (8.35)

Now that we have the log-linear quantile map extrapolation coefficients, to price a put

option struck at K < Kl, we have from (8.24) and (8.25)

F ·
[
ez · Φ

(
z−αl

βl

)
− eαl+

1
2
β2
l · Φ

(
z−αl

βl
− βl

)]
(8.36)

where we have substituted z := ln(K/F ). In complete analogy, for call options struck

above Kr, we obtain

F ·
[
eαr+ 1

2
β2
r · Φ

(
αr−z
βr

+ βr

)
− ez · Φ

(
αr−z
βr

)]
. (8.37)

For any given strike in the extrapolation domains, we can now obtain the implied volatility

for that strike by first computing the respectively out-of-the money option, and inverting

it to the associated Black volatility as usual.

Before we conclude this section, we wish to provide some analytical understanding

of the log-linear factor extrapolation method, and its asymptotic behaviour for large

log-strikes z. For this purpose, we use the extrapolation option price formulae (8.36)

and (8.37) to derive an expansion for the implied volatility, or, to be precise, for the

variance-over-log-strike function f(z). We start this with the postulation that f(z) can

be approximated by a finite a power series f̂(z) of 1
z

for large |z|:

f̂(z) :=
∑N

i=0 ci · z−i . (8.38)
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We then substitute this into the Black formula (2.1) with σ =

√
f̂(z) . We equate this

with (8.36) for puts when θ = −1, and with (8.37) for calls when θ = +1. Note that the

resulting equations do not permit Taylor expansions in 1
z
. Instead, we use the asymptotic

expression [AS84, equation 26.2.12] given in equation (3.7) to replace all occurences of the

cumulative normal function. These equations, then, still don’t permit any conventional

Taylor expansion and we need to match the coefficients of the leading orders of z in the

respective exponents. Up to second order in 1
z
, for both call and put options, we so obtain

and match

F ·β3

z2
√

2π
· e−

1
2
α2

β2 + α+β2

β2 z − 1
2β2 z

2

=
F ·
√
c30

z2
√

2π
· e−

c40+4c21+4c0c2
8c30

+
c20+c1
β2 z − 1

2c0
z2

. (8.39)

This holds for all z when

c0 = β2 (8.40)

c1 = β2(β2 + 2α) (8.41)

c2 = 1
4
β2(β2(5β2 + 16α) + 12α2) . (8.42)

As we go higher in orders of 1
z
, we can use standard Taylor expansion and match powers.

Up to order N = 5, the coefficients are:-

c3 = 1
4
β2(β2(β2(7β2 + 30α− 4) + α(40α− 8)) + 16α3) (8.43)

c4 = 1
8
β2(β2(β2(β2(21β2 + 112α− 30) + α(210α− 96)) (8.44)

+ α2(160α− 72)) + 40α4)

c5 = 1
24
β2(β2(β2(β2(β2(99β2 + 630α− 242) + α(1512α− 1044) + 72) (8.45)

+ α(α(1680α− 1416) + 144)) + α3(840α− 592)) + 144α5)

To demonstrate the shape of the implied volatility profile from the log-linear factor extrap-

olation methodology in comparison to linear extrapolation of f(z),, we show in figure 7 an

example for the 1Y USDRUB smile as observed on the 24th of September 2013. Two in-

terpolators were calibrated to exactly the same data and forced to have the same slopes in

implied volatility in the input data node locations. Log-linear factor extrapolation clearly

generates a much gentler increase in the wings of the smile. Also noteworthy is the ex-

cellent accuracy of the asymptotic expansion for implied volatility given by the square

root of f̂(z) for |z| � 0. For |z| near zero, or even for |z| near the point of extrapolation,

however, the asymptotic form is of no use.

For applications where an explicit analytical extrapolation formula is desired instead

of the path to compute a price from (8.36) or (8.37) and implying volatility from it, it is

possible to use (once again) the rational cubic form of Delbourgo and Gregory [DG85].

We write the extrapolation as the function

f(z) = ǧ(w) (8.46)
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Figure 7: A quantile map interpolator with log-linear factor extrapolation is shown as the solid green

line. Extrapolation applies to all abscissa values outside the range spanned by the input volatilities (purple

crosses). Compare this with the extrapolation of implied volatility generated by linear extrapolation for

f(z), i.e., variance-over-log-strike as shown in the brown dashed line. The latter was interpolated with

a cubic spline that was clamped in all of the five input data nodes to a slope that matches that of the

quantile map interpolator in the respective node.

with

w := 1/z . (8.47)

It follows that

ǧ′(w) = −f ′(z) · z2 (8.48)

ǧ′′(w) = [2f ′(z) + zf ′′(z)] · z3 . (8.49)

For extrapolation beyond the boundary zr := ln(Kr/F ), we use a rational cubic form for

ǧ(w) on the interval [0, wr] with wr = 1/zr. The rational cubic form is specified to match

ǧ(0) = c0 ǧ(wr) = f(zr) (8.50)

ǧ′(0) = c1 ǧ′(wr) = −f ′(zr) · z2
r (8.51)

and

ǧ′′(wr) = [2f ′(zr) + zrf
′′(zr)] · z3

r . (8.52)

Note that the values f(zr) and f ′(zr) are the very same numbers that we previously used

to compute the vanilla and digital option prices at Kr in order to calibrate αr and βr,

whence they are already available in our calculations. As for f ′′(zr), we want to ensure

that it is computed from the log-linear factor extrapolation, not from the interpolator for

f(z) that we use on the inside of the interpolation domain. To this end, we note that the
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Bronzin-Breeden-Litzenberger density resulting from (8.36) at the boundary zr is given

by

v′′(Kr) =
ϕ(yr)

Krβr
(8.53)

with

yr =
zr − αr
βr

, (8.54)

which we can set equal to (2.11) in order to solve for f ′′(zr). Since the rational cubic

form (A.1) matches the levels and slopes at both ends of its specification interval by

construction, the only thing left to do is to compute the rational cubic shape parameter

r such that the second derivative at the right hand side of the interval [0, wr] is indeed

matched to (8.52), and this is discussed in appendix B. For extrapolation on the put

option side, the respective rational cubic form is of course to be defined on [wl, 0] with

wl = 1/zl. All else follows in complete analogy whence we omit the specifics. The net

effect for the shape of implied volatility extrapolation from the rational cubic extrapolation

formula derived from the log-linear factor extrapolation method is shown in figure 8. We
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Figure 8: The rational cubic form of log-linear factor extrapolation for the same data as in figure 7.

argue that the result is highly satisfactory. It remains to be mentioned that the rational

cubic extrapolation form for log-linear factor extrapolation is, alas, not guaranteed to be

free of arbitrage, though, given the quality of its fit to the analytically guaranteed exact

form (which involves implying volatilities from prices), it is unlikely that negative densities

or out-of-bounds digitals would ensue. After all, the rational cubic form is accurate to

second order near the extrapolation boundary, and accurate asymptotically in 1/|z| to

first order for |z| → ∞. As always with approximation methods, the proof of its viability

will lie in its use in practical applications.
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We conclude this section by identifying the following properties of log-linear factor ex-

trapolation for implied volatility:-

� For |z| → ∞, implied volatility converges to the respective extrapolation side’s

log-linear factor coefficient β, which we would have expected intuitively given the

stochastic factor nature of the extrapolation.

� As |z| → ∞, implied volatility, to lowest order, converges to β like 1/|z|, i.e., inverse

in the log-strike.

9 Numerical examples

We show in figures 9 and 10 an example for the subtleties that can make all the difference

between the occurrence of negative densities and arbitrage-free interpolation. On the
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Figure 9: Three different interpolation methods giving rise to almost identical implied volatility profiles.

presented scale, the three interpolation methods seem to result in indistinguishable implied

volatility curves. The main difference is that linear extrapolation of option prices below

the lowest input strike results in a rapidly decaying implied volatilities, as one would

expect. However, if we investigate the Bronzin-Breeden-Litzenberger densities associated

with the three interpolation methods in figure 11, the difference becomes painstakingly

obvious. The first thing we notice is the pronounced oscillation of the density generated

by shape-preserving rational cubic interpolation of option prices. These oscillations do

of course correspond to the virtually invisible gentle undulations of the implied volatility

profile which, in a more pronounced form, we had already seen in figures 1 and 2. More

subtly, but of more financial engineering concern, is the fact that the solid blue line

in figure 11, which corresponds to the density generated from the natural cubic spline

interpolation of f(z), actually dips into the negative domain for strikes near K/F ≈ 0.05.

We show an enlargement of this area in figure 12. The respective strike range may appear
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Figure 10: The same data as in figure 9 on a logarithmic scale for the abscissa.
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Figure 11: The Bronzin-Breeden-Litzenberger density associated with the three implied volatility in-

terpolations of figures 9 and 10.

far from the money, but for the valuation of exotic contracts that need to be calibrated

to all strikes, this is a real problem. What’s more, the fact that the negative density is

in this case very far from the money is just a matter of coincidence. After all, since the

direct interpolation of f(z) provides no guarantee whatsoever that it does not generate

spurious arbitrage: this could happen anywhere! Reassuringly, however, we see that the

spurious negative density is indeed remedied by the clamped interpolation methodology

presented in this article, as can be seen in the green long-dashed line in figures 11 and 12.

We show how small the required adjustment for implied volatilty is in figure 13. The

fact that the adjusted density displays some positive spikes is of no practical or financial

concern. After all, in order to reproduce the given implied volatilities in the interpolation

nodes perfectly, the underlying probability has to be distributed somewhere, and if the

24



-0.05

0

0.05

0.1

0.15

0.2

0.045 0.05 0.055 0.06

K/F

Density via natural cubic splines for f(z)

Density from rational cubic interpolation of call option prices

Density from clamped interpolators to avoid arbitrage

Area of negative density from natural cubic splines from f(z)

Input data node locations

Figure 12: An enlargement of the area of negative density implied by cubic spline inerpolation of f(z)

shown in figure 11.
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Figure 13: The area where the adjusted implied volatility differs from the original cubic spline inerpo-

lation of f(z). Only two intervals needed to be switched to interpolation of prices over strikes.

only solution that is free of arbitrage involves pinned probabilities, so be it! Also, the

situation of pinned probabilities is not even unusual in options markets, for a number

of reasons ranging from mere popularity of certain strikes and the effect of hedging, as

well as technical traders’ views on economically or psychologically critical levels of the

underlying. In this case, we notice not only two spikes right next to the input data

node locations of K/F = 0.0351 and K/F = 0.0686, but also a rather moderate positive

bump near the input node location K/F = 0.049. This is uncannily consistent with the

fact the we had originally produced the presented data from a finite-differencing discrete

approximation of a stochastic volatility model from which we had computed the input

data as implied volatilities from the so numerically obtained option prices. Uncanny,

because these original option prices were by construction computed from a discrete set of
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pinned probabilities!

In our second numerical example, we have constructed a set of implied volatilities that

generate the call option prices for the three strikes K/F ∈ {2.73, 3.82, 5.34} to form a

straight line when charted over strikes. This situation does of course imply that there is

a region of zero density between the first and the last of those three strikes. This case is

marginal in the sense that even the slightest numerical deviation in the wrong direction

in that region will give rise to arbitrage, and thus comprises an extremely difficult case for

any volatility interpolation methodology. First, we show in figure 14and an enlargement
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Figure 14: A second example. Once again, the three different interpolation methods appear as almost

identical implied volatility profiles.
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Figure 15: The Bronzin-Breeden-Litzenberger density associated with the three implied volatility in-

terpolations of figure 14.

for the region of particular interest of this test, i.e., K/F ∈ [2.73, 5.34], in figure 16. the

global shape of the implied volatility smiles with the three different interpolation methods,
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Figure 16: An enlargement of the critical region of zero Bronzin-Breeden-Litzenberger density for the

input data of figure 14.
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Figure 17: The same data as in figure 14, but on a logarithmic scale. The solid light blue line is

the absolute difference between the clamped spline method (long-dashed dark green line) and implied

volatility via natural cubic splines for f(z) (solid blue line).

namely, via natural cubic splines for f(z), via rational cubic interpolation for option

prices, and via the presented methodology of clamped interpolators. Next, we show the

associated Bronzin-Breeden-Litzenberger densities in figure 15, Unsurprisingly, the direct

interpolation of implied volatility as a natural cubic spline for the variance-over-log-strike

function f(z) results in negative density near the middle node of the set of three that

should really form an area of exactly zero density. The clamped alternating interpolator,

however, as was intended, avoids the negative density by switching to interpolation via

option prices. As a consequence, we end up with positive lump sums of probability at

the end points of the zero density interval [2.73, 5.34], which is the correct behaviour in

this case. Finally, we show in figure 17 the absolute magnitude of the implied volatility
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adjustment, which highlights that the region of zero density is not the only area that

required modification to remain free of arbitrage in this example, albeit that that region

clearly was adjusted by the largest amount. Even though the adjustment is at its peak as

much as 22 basis points (absolute) of implied volatility, it is important to remember that

it is exactly zero at all of the original input data nodes. The adjustment only applies to

actual interpolation!

10 Summary

We have described a procedure for the clamped concatenation of variance-over-log-strike

interpolators with price interpolators for the sake of smooth interpolation of implied

volatility without spurious arbitrage. In short, the process entails:

1. Build an underlying implied volatility interpolator based on interpolation of actual

variance in the sense σ2·T over z := ln(K/F ) as f(z) with σ(K) =
√
f(ln(K/F ))/T .

This interpolator f(z) is preferably a natural cubic spline with linear extrapolation.

2. Detect out-of-bounds digitals and negative density occurrences in all intervals. First,

by computing the left-hand-side and right-hand-side limits of the density from the

C1 interpolator f(z) analytically. Then, by checking the midpoint of the interval

analytically. Approximate g(K) := v′(K) as a rational cubic matching its value and

slopes at either side of the interval, and matching its value in the mid-point of the

interval. Note that the slope of g(K) is the density which was previously already

computed at both ends and the mid-point of the interval. From this rational cubic

fit of g(K) to the boundary values, the mid-point, and the boundary slopes, compute

approximations for the slope of the density given by g′′(K) at the interval boundaries

and the mid-point. Then, from the so computed values for the density ψ and ψ′, for

both the left-half, and the right-half sub-interval, individually, by the aid of a local

cubic fit, assess whether the density has a local minimum and estimate its location.

If there is a minimum inside the respective half-interval, check the actual density

function analytically from the original C1 interpolator f(z) at that estimate of the

location of the minimum.

3. Within each interval that was so identified as being density-defective, implied volatil-

ities will then be computed by interpolation of prices. To do this, build rational

cubic interpolators of (out-of-the-money) prices with the geometric mean method

of choosing the slopes at interpolation interval boundaries to preserve monotonicity

and convexity.

4. For any density-defective interval Ii, compute analytically the boundary slopes di

and di+1 of the price function (i.e., the digitals v′(K) at the boundaries of the in-

terval) from the variance interpolator f(z), and impose those slopes on the price
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interpolator. Note that this configures the subsequent price interpolation to have

slopes on the interval boundaries consistent with the slopes of the original volatil-

ity/variance interpolator. This is the key to the appearance of smoothness. Also

store the straight line interval slope values

∆i :=
v(Ki+1)− v(Ki)

Ki+1 −Ki

. (10.1)

These should satisfy the convexity condition

di ≤ ∆i ≤ di+1 . (10.2)

If the convexity condition is not met, say, di > ∆i, then set di to the value from the

unconstrained price interpolator. The geometric mean calculation method for the

interval boundary slopes mentioned above should ensure that those values meet the

convexity condition.

5. On interval Ii, now interpolate prices with the so chosen lateral slope values di and

di+1 with rational cubic interpolation. Imply volatilities from the so obtained prices.

6. Rebuild the variance interpolator f(z), if it supports internal clamping, with an

override of boundary slopes at those locations where the above procedure effectively

resulted in overrides of the respective di values. When this happens, we need to

repeat the check for defective intervals since this last step can sometimes reintroduce

negative densities on other intervals. If any additional intervals are found to be

defective, the above ironing-out algorithm needs to be repeated. In principle, it is

possible for this to result in an iteration until all intervals are interpolated by prices,

but this should only happen for totally corrupt input data.

In addition, we have also analyzed linear extrapolation in variance over logarithmic strike,

and derived simple closed form conditions that are necessary and sufficient for the extrap-

olation to be free of arbitrage. Further, we have explained an alternative for extrapola-

tion based on a log-linear normal factor representation of the underlying, and provided

asymptotic expansions to understand and explain the behaviour of this extrapolation

methodology in the limit of high or low strikes. Finally, we have given a rational cubic

extrapolation form in terms of variance-over-log-strike which provides the compromise

of very fast evaluation with a very close fit to the analytically exact log-linear factor

extrapolation methodology.
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A Rational cubic interpolation fit to an interior point

Given an abscissa interval [xl, xr] with boundary function values {yl, yr} and associated

slope values {sl, sr}, the rational cubic interpolation formula of Delbourgo and Gregory

reads

f(x) =
yrt

3 + (ryr − hsr)t2(1− t) + (ryl + hsl)t(1− t)2 + yl(1− t)3

1 + (r − 3)t(1− t)
(A.1)

with h := xr − xl and t := x−xl
h

with a suitably chosen cubic shape parameter r > −1.

If we want to choose r in order to match an interior point (x, y), equation (A.1) can be

solved for r to obtain

r(x,y) =
y · (1− 3t(1− t))− yrt3 + hsrt

2(1− t)− hslt(1− t)2 − yl(1− t)3

yrt2(1− t)− yt(1− t) + ylt(1− t)2
. (A.2)

B Rational cubic interpolation fit to the second deriva-

tive at one end

The rational cubic form (A.1) matches a given second derivative f ′′l at xl when

r =
1
2
· h · f ′′l + (sr − sl)

∆− sl
(B.1)

with h := xr − xl and ∆ := yr−yl
h

. The second derivative f ′′r at xr is matched when

r =
1
2
· h · f ′′r + (sr − sl)

sr −∆
. (B.2)

C Solving the quantile slope equation

Solving the quantile slope equation (8.30) amounts to finding the root of

f(x) = c (C.1)

with

f(x) := 1
2
x2 + ln(Φ (x)) . (C.2)

We note that

ef(x) = 1
2
erfcx(− x√

2
) (C.3)

where erfcx(·) is the scaled complementary error function [Cod69], and thus a formal

solution to f(x) = c is

x = −
√

2 · erfcx−1(2 · ec) . (C.4)
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However, in contrast to the error function erf(·) and the complementary error function

erfc(·), unfortunately, no standard implementations for the inverse of the scaled comple-

mentary error function are readily available. We therefore proceed with our description

of a solution that is accurate to standard IEEE 64 bit floating point precision with two

iterations, i.e., two evaluations of f(x).

The quantile slope function f(x) is strictly monotonic, convex, with growth at most of

quadratic order, and thus readily amenable for standard iterative root finding procedures.

For large |x|, it rapidly converges to the invertible forms

lim
x→−∞

f(x) ≈ − ln
(
−x
√

2π
)

(C.5)

lim
x→+∞

f(x) ≈ 1
2
x2 . (C.6)

Near the origin, its inverse is well approximated by the rational form

xmid

0 (c) := −∆0 ·
√

π
2

1 + ∆0

2
·
(
1− π

2

)
1 + ∆0 ·

(
1− π

2
+ ∆0

3
·
(
1− π

4

)) (C.7)

with

∆0 := f(0)− c = ln(1/2)− c . (C.8)

This suggests that a good initial guess can be formed by a suitable choice of branch

switches on c to combine the asymptotics with the rational form. Choosing the lower

branch to be for c < −2.25 and the upper branch for c > 1.4, we obtain the initial guess

x0(c) =


− e−c√

2π
when c < −2.25

xmid
0 (c) when −2.25 ≤ c ≤ 1.4

√
2c when c > 1.4 .

(C.9)

For the root finding procedure, we recommend the third order Householder method (which

is of fourth order in convergence)

xn+1 = xn + ν(xn) · 1 + ν(xn) · h2(xn)/2

1 + ν(xn) · [h2(xn) + ν(xn) · h3(xn)/6]
(C.10)

with

ν(x) = −f(x)− c
f ′(x)

, h2(x) =
f ′′(x)

f ′(x)
, h3(x) =

f ′′′(x)

f ′(x)
. (C.11)

The required derivatives of f(x) are given by the simple expressions

q :=
ϕ(x)

Φ(x)
f ′′(x) = 1− q · (x+ q)

f ′(x) = x+ q f ′′′(x) = q · [x2 − 1 + q · (2 · q + 3 · x)] .

(C.12)
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Figure 18: The quantile slope function (C.2) [right axis], the initial guess for its inverse [right axis], and

the (decadic logarithm of the) relative errors of the initial guess and the first two iterations [left axis].

Combining the initial guess (C.9) with the iteration procedure (C.10), the function

f(x) can be inverted to standard (64 bit) floating point machine accuracy with two iter-

ations, as is shown in figure 18. Note that the range for x in that figure is [−10, 10] and

consider that the function Φ(x) becomes indistinguishable from 1 for x & 7.5 on standard

64 bit IEEE floating point hardward. That point is in fact easy to identify in the figure as

the abscissa where the blue lined labelled “log10(|relative error of initial guess|)” denoting

the decadic locarithm of the absolute value of the relative error of the initial guess sud-

denly levels out at about 2·10−16 (which is approximately the machine accuracy defined as

DBL EPSILON). For negative x, the residual relative error is essentially just the limit of

the accuracy of the cumulative normal function Φ(x) that is employed, and this accuracy

diminishes as x → −∞, mainly due to the loss of accuracy of the exponential function

for large arguments [Mar04] as is invariably employed in the numerical implementation

of Φ(x). Having said that, it is in fact possible to implement f(x) via the relationship

f(x) = ln
(

erfcx
(
− x√

2

))
− ln 2 (C.13)

by defining the auxiliary function

lnerfcx(x) := ln(erfc(x)) (C.14)

and implementing lnerfcx() directly without the involvement of any avoidable exponen-

tials or logarithms. This is straightforward5 with the source code of erfcx() given by

Cody [Cod69], and this is how figure 18 was produced.

5 With the caveat that some terms of the form ln(1− ε) will need to be expanded for small ε to avoid

the otherwise desastrous loss of accuracy.
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Remark C.1. If we define the inverse function ξ(c) by the aid of the implicit function

theorem formally as

c → ξ = ξ(c)
∣∣∣ 1

2
ξ2 + ln(Φ(ξ)) = c , (C.15)

then the above semi-analytical implementation for ξ(c) given by the initial guess (C.9)

combined with two iterations of (C.10) effectively gives us also an implementation for the

inverse scaled complementary error function via the simple relationship

erfcx−1(y) = − 1√
2
ξ (ln (y/2)) . (C.16)

This makes the result in this section useful in other applications that require erfcx−1(·).

C.1 An optimised initial guess

It is possible to derive an even better initial guess function than (C.9) by the aid of rational

Chebyshev approximations [PTVF92] of the inverse. Without going into the details of its

calculation, we give the improved version

x0(c) =



1

η · (1 + η ·R1(η))
when c < −2.565

√
π
2
· y · (1− y ·R2(c)) when −2.565 ≤ c ≤ 7.258

√
2c when c > 7.258 .

(C.17)

with

η := −
√

2π · ec (C.18)

y := c+ ln(2) (C.19)

R1(η) :=
5.997240089442634677E−05 + η · 1.003256824584751072

1− η · (0.05267912997789834378 + η · 0.2842087186525299458)
(C.20)

R2(c) :=
P2(c)

Q2(c)
(C.21)

P2(c) := 0.2327141995027849075 + c · (0.1438410800713837423 + c ·
(0.03897036447332576786 + c · (0.004555561056678753343 + c · 0.0001955212496637105635)))

(C.22)

Q2(c) := 1 + c · (0.8885805957115674447 + c · (0.3392936144039581658 + c ·
(0.06608206677330506762 + c · (0.006268281524752193634 + c · 0.0002126843801522933914))))

(C.23)

which has a relative accuracy of better than 10−5 for all input values. With this initial

guess, we attain standard IEEE 64 bit floating point precision (DBL EPSILON) with a

single iteration of the Householder(3) step (C.10). In fact, in perfect precision, a single step
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Figure 19: The quantile slope function (C.2) [right axis], the improved initial guess (C.17) for its inverse

[right axis], and the (decadic logarithm of the) relative errors of the improved initial guess (C.17) and

the first iteration [left axis], all in perfect precision.

gives a relative accuracy of better than 10−22 as is shown in figure 19. The actual accuray

you obtain depends of course as always on the noise and accuracy of the implementation

of the root function f(x).

In principle, it is of course also possible to compute highly accurate rational approx-

imations for the inverse function that require no further refinement. This, however, has

the side effect that the inverse function is accurate with respect to the reference data

that were used for its own construction, which may or may not be perfectly consistent

with your implementation of the root function f(x). The consequence could be that a

round-trip calculation is not a closed loop, i.e. f−1(f(x)) 6= x, and this is often more

important than perfect theoretical accuracy of f−1(·) and f(x). It is for this reason, that

we favour the approach of a good initial guess with at least one “polishing” iteration,

bringing the inverse in line with the root function f(x).
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