
By Implication

Peter Jäckel∗

First version: 9th July 2006
This version: 24th November 2010

Abstract

Probably the most frequently executed numerical task in
practical financial mathematics is the calculation of the im-
plied volatility number consistent with a given forward,
strike, time to expiry, and observable market price for Eu-
ropean plain vanilla call and put options. At the same
time, this task is probably also the least documented one
in applied financial mathematics. In this document, it is
explained why it is not as easy as one might think to im-
plement an implied volatility function that is both efficient
and robust, and a possible solution to the difficulty is sug-
gested.

1 Introduction

A plain vanilla call or put option price p in the Black-
Scholes-Merton [BS73, Mer73] framework is given by

p = δ · θ·
[
F · Φ

(
θ ·
[

ln(F/K)
σ + σ

2

])
(1.1)

−K · Φ
(
θ ·
[

ln(F/K)
σ − σ

2

])]
where θ = 1 for call options and θ = −1 for put options,
F := Se(r−d)T , S is the current spot, K is the strike, r
is a flat continuously compounded interest rate to maturity,
d is a flat continuously compounded dividend rate, σ =
σ̂ ·
√
T , σ̂ is the root-mean-square lognormal volatility, T

is the time to expiry, and Φ(·) is the standard cumulative
normal distribution function. In the Black-Scholes-Merton
framework, the quantitity δ represents a discount factor to
time T , and in general, might be referred to as the deflater
of the option price.

Black [Bla76] extended the applicability of the geomet-
ric Brownian motion framework to (what we might call to-
day) an arbitrary numéraire by ingeniously separating the
price deflation from the calculation of an option value rel-
ative to today’s value of the numéraire, thus making (1.1)
applicable to almost all areas of financial option valuation
theory. To value an interest rate swaption, for instance, we
evaluate (1.1) with F representing the forward swap rate,
∗Global head of credit, hybrid, inflation, and commodity derivative

analytics, ABN AMRO, 250 Bishopsgate, London EC2M 4AA, UK

and set the price deflater δ to be today’s net present value
of the forward starting annuity.

Since market quoting conventions for many asset classes
are such that option prices are compared for their relative
value in terms of the root-mean-square lognormal volatil-
ity σ̂, it is important for any derivatives library to be able
to convert actual option prices into the equivalent implied
Black volatility figure. In addition, the implied volatil-
ity function is often also used either explicitly or implic-
itly in exotic pricing models or analytical approximations.
Particularly in the latter application, it is often impor-
tant that the implied volatility computed by the derivatives
analytics library is of high accuracy, and is robust even
for parameter combinations that may, at first sight, seem
not to be relevant. For instance, in the displaced diffu-
sion model [Rub83] governed by the stochastic differential
equation

dS = ς [qS + (1− q)S0] dW , (1.2)

the vanilla option price for strike κ can also be computed
using the Black formula (1.1) with adjusted input parame-
ters

F → S0/q

K → κ+ (1−q)/q · S0

σ → ς · q ·
√
T .

In order to attain a strongly pronounced negative implied
volatility skew such as it is observed in the equity and in-
terest rate market for low strikes, q often has to take on
values as small as 10−4. Conversely, for some high strikes
in the FX or commodity markets, q may need to exceed
2. All of this means that the effective standard deviation
number σ in the Black formula (1.1) can easily be in the
range [10−4%, 1000%], or possibly even outside. As a con-
sequence, any implied volatility solver should be able to
produce a comparatively, i.e. relatively, accurate figure even
for parameter combinations that mean that σ is a very small
or moderately large number, since it shouldn’t assume that
the returned number is used straightaway: it may yet, for
instance, undergo division by q ·

√
T for small or large q

and small or large T . This clearly requires any solver ter-
mination criterion to be based on relative accuracy in σ, not
in function value.

1

2 Implying volatility

Given an option price p, the task at hand is to find the log-
standard deviation number σ that makes p equal to expres-
sion (1.1) for the forward F and strike K. Once we know
σ, the implied volatility figure is given by σ̂ = σ/

√
T . So

far, it all seems easy.
Using the definitions

x := ln (F/K) b :=
p

δ
√
FK

, (2.1)

the equation we need to solve for σ becomes

b = θe
x/2 ·Φ (θ ·[x/σ + σ/2])− θe

−x/2 ·Φ (θ ·[x/σ − σ/2]) .
(2.2)

The special but very important case F = K reduces to

b|x=0 = 1− 2Φ(−σ/2) (2.3)

which allows for the exact solution1

σ = −2 · Φ−1
(

1
2(1− β)

)
(2.4)

wherein β is the normalised option price that is to be
matched.

2.1 Limits

The normalised option price b is a positively monotic func-
tion in σ ∈ [0,∞) with the limits

h(θx) · θ ·
(

e
x/2 − e

−x/2
)
≤ b < e

θx/2 (2.5)

wherein h(·) is the Heaviside function.
In order to understand the asymptotic behaviour of (2.2)

from a purely technical point of view, let us recall [AS84,
(26.2.12)]

Φ(z) = h(z)− ϕ(z)
z

[
1− 1

z2
+O

(
1
z4

)]
for |z| → ∞

(2.6)

with ϕ(z) = e−z
2
/2
/√

2π. Equation (2.6) highlights a
common practical issue with the cumulative normal distri-
bution function: when its argument z is significantly posi-
tive, as is the case here for deeply in the money options2,
Φ(z) becomes indistinguishable from 1, or has only very
few digits in its numerical representation that separates it
from 1. The best way to overcome this problem is to use
an implementation of Φ(z) that is highly accurate for nega-
tive z, and to only ever use out-of-the-money options when
implying Black volatility3.

1assuming that one has a highly accurate inverse cumulative normal
function available, such as the one published by Peter Acklam [Ack00]

2A one-week-to-expiry call option struck at 50% of the spot for σ̂ =
50% corresponds to z ≈ 10.

3This is the reason why put-call parity should never be used in appli-
cations: it is a nice theoretical result but useless when you rely on it in
your option pricing analytics.

Equation (2.6) enables us to derive the asymptotics

lim
σ→∞

b = e
θx/2 − 4/σ · ϕ(σ/2) (2.7)

lim
σ→0

b = ι+ x · ϕ(x/σ) ·
(σ
x

)3
(2.8)

using the definition of the normalised intrinsic value

ι := h(θx) · θ ·
(

e
x/2 − e

−x/2
)
. (2.9)

From equation (2.8) we can see what happens as volatil-
ity approaches zero (for x 6= 0): since ϕ(y) decays more
rapidly than y−n for any positive integer n as y → ∞,
the Black option price does not permit for any regular ex-
pansion for small volatilities. The extremely flat functional
form of b for small σ for x 6= 0 can also be seen in figure 1,
and this is where the trouble starts.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5 3 3.5 4

σ

b

x = 1/2

x = 1/4

x = 0

x = -1/4

x = -1/2

x = -1

Figure 1: Normalised call (θ = 1) option prices given by (2.2).

Conventional wisdom has it that the best all-round
method of choice for the root-finding of smooth functions
is Newton’s algorithm. Alas, this is not always so for func-
tions that do not permit regular expansions on a point in
the domain of iteration, or on its boundary. This unpleas-
ant feature of the Black option formula is made worse by
the fact that it is convex for low volatilities and concave for
higher volatilities. This means that, given an arbitrary ini-
tial guess, a Newton iteration may, if the initial guess is too
low and in the convex domain, be fast forwarded to very
high volatilities, and not rarely to levels where the numer-
ical implementation of our (normalised or conventional)
Black function no longer distinguishes the result from the
limit value for high volatilities. When the latter happens,
the iteration ceases and fails. Conversely, when the arbi-
trary initial guess is too high and in the concave domain,
the first step may attempt to propel volatility to the nega-
tive domain. Even when this doesn’t happen, the Newton
algorithm can enter a non-convergent, or near-chaotic, cy-
cle as discussed in [PTVF92, section 9.4]. Both of these
unfortunate accidents can be prevented by the addition of
safety controls in the iteration step, e.g. [PTVF92, routine
rtsafe]. Still, even with a safety feature, the Newton
method can still take many more iterations than one would
want it to in any time-critical derivatives valuation and risk

2

management system where it is invoked literally billions or
even trillions of times every day 4. Ideally, when the correct
implied volatility is in the convex domain of the function,
we would want to converge from above (in function value),
when it is in the concave domain, we would want to con-
verge from below, since we are then guaranteed to never
leave the respective domain. Fortunately, the normalised
Black option formula (2.2) allows for the solution for the
point of inflection. It is at

σc =
√

2|x| . (2.10)

The temptation is now to simply start at σc and Newton-
iterate until we are converged. This works fine for all σ >
σc, but fails for many σ < σc. The reason for this failure
is the near-flat shape of the normalised Black function for
small volatilities. If you try it, you will find that the iteration
almost grinds to a halt since the update step for the next
guess converges practically as rapidly to zero as the current
guess to the correct solution (for low volatilities and x 6= 0)
as shown in figures5 2 and 3. Clearly, we would prefer to

-3.0
-1.9

-0.9
0.2

1.3
2.4

0.001%
3.842%
32.828%

147.844%

489.898%

0%

10%

20%

30%

40%

50%

60%

70%

80%

∆σ

xσ
-3.0

-1.9
-0.9

0.2
1.3

2.4

0.001%
3.842%
32.828%

147.844%

489.898%

0%
2%
4%
6%
8%
10%
12%
14%
16%
18%

20%

∆σ

xσ

-3.0
-1.9

-0.9
0.2

1.3
2.4

0.001%
3.842%
32.828%

147.844%

489.898%

0%

2%

4%

6%

8%

10%

12%

∆σ

xσ
-3.0

-1.9
-0.9

0.2
1.3

2.4

0.001%
3.842%
32.828%

147.844%

489.898%

0%

1%

2%

3%

4%

5%

6%

7%

8%

∆σ

xσ

Figure 2: The absolute difference between the correct implied volatil-
ity and the number attained after n iterations when starting at σc and
simply Newton-iterating with start value σc given in (2.10) for different
n on (σ, x) ∈ [10−5, 2

√
2 · 3] × [−3, 3]. Top left: n = 5, top right:

n = 50, bottom left: n = 100, bottom right: n = 150. Note that
the σ-axis has been scaled non-linearly to highlight the region of inter-
est. The calculations for x = 0 have been done without iteration using

equation (2.4).

have a method that doesn’t need hundreds and hundreds of
iterations to converge to an acceptable accuracy in σ for
some perfectly reasonable parameter values.

4The implied volatility function is not only used for the representa-
tion of market prices but often also implicitly in exotic pricing models
or analytical approximations.

5Note that the zero levels at the back of all shown diagrams for non-
zero x and very small σ represent outright calculation failures since for
those parameter combinations the normalised Black function value is
smaller than the smallest representable floating point number (whence it
was rounded down to zero). In other words, those areas in the parameter
plane are not attainable in practice.

-3.0
-1.9

-0.9
0.2

1.3
2.4

0.001%
5.594%
52.699%

254.163%

0.E+00

1.E-06

2.E-06

3.E-06

4.E-06
|∆σ/σ|

x
σ

-3.0
-1.9

-0.9
0.2

1.3
2.4

0.001%
3.842%

32.828%

147.844%

489.898%

0

100

200

300

400

500

600

700

n

x
σ

Figure 3: Left: residual relative difference between the correct implied
volatility and the number attained after Newton-iterating with start value
σc given in (2.10) until the current relative step size is less than 10−4 of
the attained volatility level. Right: the number of iterations associated
with the residual relative differences on the left. The calculations for

x = 0 have been done without iteration using equation (2.4).

3 Where to start and what to aim for

Solving for roots of near-flat functions can be a nightmare
to tackle. Again, though, we are lucky: the normalised
Black function is amenable to straightforward root-finding
even in its near-flat region by simply switching to solving
for the value of σ that makes the logarithm of a given nor-
malised option value equal to the logarithm of (2.2) ! In
the concave domain, i.e. for σ > σc, this transformation
is not helpful, and we stick with solving for the original
normalised option value match. This means, given a target
normalised option value β, the normalised moneyness x,
and the call-put flag θ, we define the objective function for
our root-finding algorithm as

f̃(σ) =

{
ln
(
b−ι
β−ι

)
ifβ < bc

b− β else
(3.1)

using
bc = bc(x, θ) := b(x, σc, θ) . (3.2)

Alas, this leaves us with a new dilemma: our simplistic ini-
tial guess σc is no longer such a good idea for all β < bc
since, with the function value on a logarithmic scale, the
normalised Black function is no longer convex but con-
cave, and the first step is likely to attempt overshooting
into the domain of negative σ. We can overcome this is-
sue by finding a better initial guess. In order to do this,
we use a technique similar to asymptotic matching known
in some sciences. Let us recapitulate: the functional form
of the asymptotic expansion6 for σ → 0 given in (2.8) is
ϕ(x/σ) · σ3

/
x2 which, alas, is not invertible in σ. The term

ϕ(x/σ), which is what gives rise to the near-flat behaviour,
is invertible in σ, though! What’s more, a function of the
form c(x) · ϕ(x/σ) (for some c(x) depending only on x)
will, for small enough σ be always larger than (2.8), which
means that, when inverted, it will give rise to an estimate
for σ that is lower than the target root. This means, in the
areas where it matters most, namely for small σ and thus

6assuming that we are only dealing with out-of-the-money option
prices

3

small option prices, using an approximation for (b− ι) that
is too high in value, but invertible, gives us precisely what
we need in order to start off the Newton algorithm on a
logarithmic scale (in value) as suggested in (3.1). The only
open question is how to choose c(x), but that is easily done:
we set it such that the crude approximation for the asymp-
totics near zero match the value at σc. This gives us

blow := (bc − ι) e
|x|
4
− 1

2(xσ)
2

+ ι . (3.3)

We can use a similar approach to improve the initial guess
when the given option price indicates that σ > σc, i.e.
when the given value β is larger than bc. In that case, we
can use a functional form which, for very large σ, resem-
bles (2.7). We choose eθx/2 − c(x)2Φ(−σ/2) since, as we
can see from (2.6), for large σ, 2Φ(−σ/2) ∼ 4/σ · ϕ(σ/2)
which matches (2.7). Matching the function’s value at σc
to determine c(x) results in the invertible function

bhigh := e
θx
2 − e

θx
2 −bc

Φ

(
−
√
|x|
2

)Φ
(
−σ

2

)
. (3.4)

A deliberate side-effect of the specific choice (3.4) is that
for x → 0, it converges to the exact invertible form (2.3),
which means that we no longer need to special-handle the
case of x = 0 as we did previously for the calculations
shown in figures 2 and 3. We show the approximations for
different values of x in figure 4. Inverting the approxima-

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 0.5 1 1.5 2

σ

x=-1/2

b

blow

bhigh

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 0.5 1 1.5 2 2.5

σ

x=-1

b

blow

bhigh

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.5 1 1.5 2 2.5 3 3.5 4

σ

x=-2

b

blow

bhigh

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 1 2 3 4 5

σ

x=-4

b

blow

bhigh

Figure 4: The invertible approximations blow and bhigh for the normalised
Black function b given by equations (3.3) and (3.4).

tions (3.3) and (3.4) gives us the improved initial guess for
any given normalised option value β:

σ0(x, β, θ) :=

{
σlow(x, β, θ) ifβ < bc
σhigh(x, β, θ) else

(3.5)

with

σlow(x, β, θ) :=
√

2x2

|x|−4 ln
(
β−ι
bc−ι

) (3.6)

and

σhigh(x, β, θ) := − 2 · Φ−1

(
e
θx
2 −β

e
θx
2 −bc

Φ

(
−
√
|x|
2

))
. (3.7)

Starting at (3.5), we thus iterate

σn+1 = σn + ν̃n (3.8)

with the Newton step ν̃n = ν̃(x, σn, θ) given by

ν̃(x, σ, θ) =

 ln
(
β−ι
b−ι

)
· b−ιb′ ifβ < bc

β−b
b′ else

(3.9)

with
b′ = e−

1
2(xσ)

2− 1
2(σ2)

2/√
2π (3.10)

until |∆σ/σ| ≈ |σn+1/σn − 1| < ε for some given relative
tolerance level ε. We show some results in figures 5 and 6.

-3.0-2.4-1.7-1.1-0.40.20.91.52.12.8

0.0001%
24.7732%
76.2393%
154.1666%

259.7535%

394.4583% 0.E+00
1.E-11
2.E-11

3.E-11

4.E-11

5.E-11

6.E-11

7.E-11

8.E-11

9.E-11

1.E-10

|∆σ/σ|

x

σ

-3-1.0714285710.8571428572.785714286

0.0001%
17.6038%
52.5260%
104.1775%

173.0265%

259.7535%

365.1145%

489.8979%

2

3

4

5

6

n

x

σ

Figure 5: Left: residual relative error |∆σ/σ| ≈ |σn+1/σn − 1| after
iterating (3.8) starting with σ0 given in (3.5) until |σn+1/σn − 1| < ε
with ε = 10−8 on (σ, x) ∈ [10−6, 2

√
2 · 3]×[−3, 3]. Right: the number

of iterations associated with the relative errors on the left.

-0.000010-0.0000050.0000000.0000050.000010

0.0001%
0.1535%
0.2981%
0.4518%

0.6149%

0.7870% 0.E+00

1.E-09

2.E-09

|∆σ/σ|

x

σ

-0.000010-0.000006-0.0000010.0000030.000007

0.0001%
0.1254%
0.2392%
0.3585%

0.4837%

0.6149%

0.7519%

0.8944%

2

3

4

5

6

7

8

9

10
n

x

σ

Figure 6: Left: residual relative error |∆σ/σ| ≈ |σn+1/σn − 1| after it-
erating (3.8) starting with σ0 given in (3.5) until |σn+1/σn − 1| < ε with
ε = 10−8 on (σ, x) ∈ [10−6, 2

√
2 · 10−5]× [−10−5, 10−5]. Right: the

number of iterations associated with the relative errors on the left.

4 Shaving off a few iterations

We can see in figures 5 and 6 that for small x, and β < bc,
the number of iterations required for convergence increases
somewhat. Comparing this with the top left diagram in fig-
ure 4 tells us that this is caused by the initial guess (3.5)

4

not being that good for those parameter combinations: for
small x, and β < bc, the initial guess σ0 is given by in-
version of blow given in equation (3.3), which in turn is
not that brilliant an approximation for small x and moder-
ate β < bc. However, for those parameter combinations,
the approximation bhigh seems to be a better approxima-
tion for the normalised Black function b, at least as long
as β > b(x, σhigh(x, 0, θ), θ) since σhigh(x, 0, θ) is the point
below which bhigh(·, σ, ·) as a function of σ gives negative
values and thus is definitely inappropriate as an approxima-
tion for b. Wouldn’t it be nice if we could somehow find a
mixed form of σlow and σhigh to provide a better initial guess
than (3.5) when β ∈ [0, bc(x, θ)] ? It turns out we can. The
crucial idea here is not to try to find a better invertible ap-
proximation for b(x, σ, θ) on the interval σ ∈ [0, σc] with
σc =

√
2|x|, but to interpolate the two inversions σlow and

σhigh directly! We choose a functional form for interpolation
in ξ := β/bc that transfers full weight from σlow at ξ = 0 to
σhigh at ξ = 1 in a fashion that some readers may recognize
as Gamma-correction or Gamma-interpolation, namely

σinterpolated :=
(

1− w(βbc)
)
· σlow + w(βbc) · σhigh (4.1)

with w(ξ) := min(ξγ , 1), wherein we have omitted the
dependency on (x, β, θ) for clarity, and with σlow and
σhigh given by equations (3.6) and (3.7), respectively. We
choose γ such that the interpolation is exact when β =
b(x, σhigh(x, 0, θ), θ) by setting:

σ∗ := σhigh(x, 0, θ) (4.2)

b∗ := b(x, σ∗, θ) (4.3)

σ∗low := σlow(x, b∗, θ) (4.4)

σ∗high := σhigh(x, b
∗, θ) (4.5)

γ := ln
(
σ∗−σ∗low
σ∗high−σ

∗
low

)/
ln
(
b∗

bc

)
(4.6)

As it turns out, we cannot always use the above formulae as
they stand. This is because, for very extreme ratios of for-
ward and strike7, it is possible that the functional form (3.3)
for blow(x, σ, θ) is not above, but below b(x, σ, θ), and as
a consequence, here, we then may have σ∗ < σ∗low. That
case, however, is benign since then σlow is an excellent ini-
tial guess anyway, whence we use it when that happens. In
summary, the initial guess can be written as

σinterpolated = (1− w∗) · σlow + w∗ · σhigh (4.7)

w∗ =
(

min
(

max
(
σ∗−σ∗low
σ∗high−σ

∗
low
, 0
)
, 1
)) ln(bc/β)

ln(bc/b∗) .

(4.8)

How well this works is shown in figure 7. The improved
initial guess formula (4.7) is the first, and most important,

7Thanks to Chris Gardner for pointing this out when, for instance,
F = 1 and K = 106.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.02 0.04 0.06 0.08 0.1

β

x = -1/16

σ(exact)
σlow
σhigh
σinterpolated

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

β

x = -1/4

σ(exact)
σlow
σhigh
σinterpolated

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

β

x = -1

σ(exact)
σlow
σhigh
σinterpolated

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.01 0.02 0.03 0.04 0.05

β

x = -4

σ(exact)
σlow
σhigh
σinterpolated

Figure 7: The interpolated initial guess σinterpolated(x, β, θ) given by
equation (4.7) for θ = 1 and different x on β ∈ [0, bc(x, θ)].

of three enhancements we present in this section that help
to reduce the number of iterations required for a certain rel-
ative accuracy in implied Black volatility.

The second one is aimed at reducing the number of iter-
ations needed for very small option values and very small
values of x, i.e. near the money. It is motivated by look-
ing at the asymptotic form (2.8) once again: the crucial
term is e−(x/σ)2 . Taking the logarithm, gives it a hyperbolic
form: − (x/σ)

2. At this point, we recall that most iterative
algorithms are derived such that they work most efficiently
when the objective function whose root is sought is well
represented by a low order polynomial. Hyperbolic forms
can be reasonably well represented. However, a hyperbolic
form that is close to 1/σ2 is even better approximated by a
low order polynomial if we take its reciprocal! This leads
us to the objective function

f(σ) =

{
1

ln(b−ι) −
1

ln(β−ι) ifβ < bc

b− β else
(4.9)

and the Newton iteration becomes

σn+1 = σn + νn (4.10)

with the Newton step νn = ν(x, σn, θ) given by

ν(x, σ, θ) =

 ln
(
β−ι
b−ι

)
· ln(b−ι)

ln(β−ι) ·
b−ι
b′ ifβ < bc

β−b
b′ else

.

(4.11)

Finally, we pull our third and last trick which exploits the
fact that the first and second derivative of b(x, σ, θ) with
respect to σ have the comparatively simple relationship

b′′

b′ = x2

σ3 − σ
4 . (4.12)

5

This means, that, whenever we have computed the value
of the iteration’s objective function and its Newton step,
we can with comparatively little computational effort cal-
culate the second order derivative terms required for the
higher order iterative root finding algorithm known as Hal-
ley’s method [Pic88]: no additional cumulative normals, no
further inverse cumulative normals, not even exponentials
are required! Halley’s iterative method is in general given
by adjusting the Newton step ν by a divisor of 1 + η with
η = ν/2 · f ′′/f ′. In our application to the calculation of the
(normalised) Black implied volatility, we add some restric-
tions by capping and flooring the involved terms in order
to avoid numerical round-off arising for extremely small
values of x and σ sometimes leading to negative σn or ex-
cessive Halley steps:

σn+1 = σn + max
(

ν̂n
1+η̂n

,−σn
2

)
(4.13)

ν̂n := max
(
νn,−σn

2

)
(4.14)

η̂n := max
(
ν̂n
2
f ′′(x,σn,θ)
f ′(x,σn,θ)

,−3
4

)
(4.15)

f ′′

f ′ = b′′

b′ −
2+ln(b−ι)

ln(b−ι) ·
b′

b−ι · 1{β<bc} . (4.16)

All of these three enhancements together lead to the rapid
convergence behaviour shown in figures 8 and 9.

-3.0-2.1-1.3-0.40.41.32.13.0

0.0001%
24.7732%
76.2393%
154.1666%
259.7535%

394.4583%
0.E+00
1.E-11
2.E-11
3.E-11
4.E-11
5.E-11
6.E-11

7.E-11

8.E-11

9.E-11

1.E-10

|∆σ/σ|

x

σ

-3-1.071428571
0.857142857

2.785714286

0.0001%
17.6038%
52.5260%
104.1775%
173.0265%

259.7535%

365.1145%

489.8979%

2

3

n

x

σ

Figure 8: Left: residual relative error |∆σ/σ| ≈ |σn+1/σn − 1|
after iterating (4.10) starting with initial guess given by (4.7) until
|σn+1/σn − 1| < ε with ε = 10−8 on (σ, x) ∈ [10−6, 2

√
2 · 3] ×

[−3, 3]. Right: the number of iterations associated with the relative er-
rors on the left.

5 Conclusion

For efficient and robust implied Black volatility
calculation:-

1. Ensure you have a highly accurate cumulative and in-
verse cumulative normal function8.

2. Transform input price p, forward F , and strike K to
normalised coordinates x = ln F/K and β = p

δ
√
FK

with δ being the discount factor to payment, annuity,
or whichever other numéraire is used, respectively.

8such as the one published by Peter Acklam [Ack00]

-0.000010-0.0000050.0000000.0000050.000010

0.0001%
0.1535%
0.2981%

0.4518%

0.6149%

0.7870%
0.0E+00

5.0E-10

1.0E-09

1.5E-09

2.0E-09

2.5E-09

3.0E-09

3.5E-09

|∆σ/σ|

x

σ

-0.000010
-0.000005

0.000000
0.000005

0.000010

0.0001%
0.1254%
0.2392%

0.3585%

0.4837%

0.6149%

0.7519%

0.8944%

2

3

4

5

n

x

σ

Figure 9: Left: residual relative error |∆σ/σ| ≈ |σn+1/σn − 1|
after iterating (4.10) starting with initial guess given by (4.7) until
|σn+1/σn − 1| < ε with ε = 10−8 on (σ, x) ∈ [10−6, 2

√
2 · 10−5] ×

[−10−5, 10−5]. Right: the number of iterations associated with the rel-
ative errors on the left.

3. Ensure you only ever operate on out-of-the-money op-
tion prices, if necessary by subtracting the normalised
intrinsic value ι = h(θx) · θ ·

(
ex/2 − e−x/2

)
from β

and switching θ → 1− 2h(x).

4. Use the initial guess formula (4.7) to start the iteration.

5. When the given normalised option price β is below
the point of inflection bc(x, θ) of the normalised Black
formula, iterate to find the root of 1/ln b(x,σ,θ) − 1/lnβ,
else of b(x, σ, θ) − β, i.e. use the objective func-
tion (4.9).

6. Use Halley’s method (4.13) with restricted stepsize.

References
[Ack00] P.J. Acklam. An algorithm for computing the inverse normal

cumulative distribution function. home.online.no/

˜pjacklam/notes/invnorm/index.html, June
2000. University of Oslo, Statistics Division.

[AS84] M. Abramowitz and I.A. Stegun. Pocketbook of Mathemati-
cal Functions. Harri Deutsch, 1984. ISBN 3-87144-818-4.

[Bla76] F. Black. The pricing of commodity contracts. Journal of
Financial Economics, 3:167–179, 1976.

[BS73] F. Black and M. Scholes. The Pricing of Options and Corpo-
rate Liabilities. Journal of Political Economy, 81:637–654,
1973.

[Mer73] R. C. Merton. Theory of Rational Option Pricing. Bell
Journal of Economics and Management Science, 4:141–183,
Spring 1973.

[Pic88] C. A. Pickover. A note on chaos and Halley’s method.
Communications of the ACM, 31(11):1326–1329, Novem-
ber 1988.

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C. Cambridge University
Press, 1992. www.nrbook.com/a/bookcpdf.php.

[Rub83] M. Rubinstein. Displaced diffusion option pricing. Journal
of Finance, 38:213–217, March 1983.

6

home.online.no/~pjacklam/notes/invnorm/index.html
home.online.no/~pjacklam/notes/invnorm/index.html
www.nrbook.com/a/bookcpdf.php

