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Abstract

We give an analytical expansion for option prices and
Black implied volatilities consistent with the Variance
Gamma model [MCC98] based on a singular expan-
sion of the standard gamma density in terms of the
Dirac functions and its derivatives.

1 Introduction

The Variance Gamma option pricing model [MCC98]
can be viewed as a geometric Brownian motion that
is time-changed by a Gamma process. Formulated as
a martingale, an asset price S0 at time t = 0 advances
to

St = S0 · eωt+θγt+σWγt (1)

at time t, with Wτ being a standard Wiener process
to time τ , γt being a gamma process with

E[γt] = t V[γt] = νt (2)

and
ω = ln

(
1− (θ + σ2/2)ν

)/
ν . (3)

The density of the gamma process is

ψγ(g; t, ν) = e
t
ν ln( gν )− gν−ln Γ( tν )

/
g (4)

and its characteristic function is

φγ(u) :=
∫

eiugψγ(g; t, ν)dg = (1− iuν)−
t
ν . (5)

Madan, Carr, and Chang [MCC98] give “closed” form
solutions for European call and put option prices un-
der this model in terms of the degenerate hyperge-
ometric function of two variables and the modified
Bessel function of the second kind. As is well docu-
mented, and frequently discussed on internet forums,
generic numerical implementations of these special
functions tend to be either unstable, or resort to
numerically intensive internal schemes. An alterna-
tive method for the calculation of option prices is
to use the characteristic function of the logarithm
Xt := θγt + σWγt of the asset process given by

φVG(u) =
(
1− iθuν + σ2u2ν/2

)− t
ν (6)
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together with a Fourier transform of the payoff as
suggested by Carr and Madan [CM99]. Alas, this
approach is also known to be numerically highly un-
stable unless one can find an analytical approxima-
tion for an optimal shift of the contour integral in the
complex domain as described by Lord and Kahl using
the example of the Heston model [LK07]. The most
viable method for numerical evaluation of European
call and put option prices is considered to exploit the
fact that, conditional on a given gamma variate γt,
the density is lognormal, as mentioned in [MCC98],
and to integrate standard Black call or put option
prices with a modified variance and forward over the
gamma density. This gives us

V (S0,K, σ, θ, ν, t) =
∫
ψγ(g; t, ν)B(Fg,K, σ

√
g) dg (7)

for the Variance Gamma option price with

B(F,K, ς) = εFΦ
(
ε(xς + ς

2 )
)
− εKΦ

(
ε(xς −

ς
2 )
)

(8)

ε = ±1 for calls/puts (9)
x = ln(F/K) (10)

Fg = S0eωt+θ̃g (11)

θ̃ = θ + σ2/2 . (12)

Whilst this approach is viable, it also requires due
diligence and care in its implementation, and needs
tens of thousands of Black function evaluations to
be robust [Sta05], though this number is likely to be
reduced significantly if adaptive quadrature schemes
are employed. The crux with all of the known meth-
ods is that in many applications the kurtosis param-
eter ν of Variance Gamma model is set to be a small
number which gives rise to the gamma density to be
very peaked, unless one considers very short option
expiries that are equal to or even smaller than ν. In
addition to this outright practical aspect, it is usually
also considered desirable to have an implementation
that provides a smooth continuity to the standard
Black function (8) as ν is gradually reduced to zero.
This, however, is numerically the hardest part since
the gamma density, in this limit, converges to a Dirac
distribution centered at t.

In this note, we give an alternative view on the
European option pricing problem with the Variance
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Gamma model that has its own advantages and short-
comings, as we shall see. It is based on a singular
expansion of the gamma density which is worth men-
tioning in its own right as it can be applied in any
context.

2 Singular expansion of the
gamma density

We begin by noting that the gamma density permits
no regular expansion for small values of ν since, as
mentioned, it converges to a Dirac function for ν →
0. In contrast, however, its characteristic function
is well behaved for small ν as it allows the Taylor
expansion in ν

φγ(u) = eiut
[
1− u2 t

2ν + (u4 t2

8 − iu
3 t

3 )ν2 + . . .
]
. (13)

Our next observation is

eiut(iu)k = dkt eiut =
∫

eiug(−1)kδ(k)(g − t)dg (14)

where δ(k)(·) represents the k-th derivative of the
Dirac function. By identification of terms, we there-
fore arrive at an expansion of the gamma density in
ν in terms of the Dirac function and its derivatives:

ψγ(g; t, ν) = δ(g − t) + ν · t2δ
(2)(g − t) (15)

+ ν2 ·
(
t2

8 δ
(4)(g − t)− t

3δ
(3)(g − t)

)
+O(ν3)

As is the nature with all functions that involve Dirac
terms, this expansion does of course make no sense if
we needed to evaluate it directly by virtue of the fact
that it consists of series of exclusively singular contri-
butions. However, any integral over the gamma den-
sity with this expansion results in a perfectly sensible
series in terms of the integrand and its derivatives:∫

ψγ(g; t, ν)f(g)dg = f(t) + ν t2f
′′(t) (16)

+ ν2
(
t
3f
′′′(t) + t2

8 f
(4)(t)

)
+O(ν3) .

Remark. By the same token, we can derive for the
Gauss density

ϕ(z;σ) = e−
1
2 ( zσ )2/

(σ
√

2π) (17)

= δ(z) + σ2

2 δ
′′(z) + σ4

8 δ
(4)(z) + σ6

48 δ
(6)(z) +O(σ8)

(18)

which is closely related, or arguably equivalent, to
the idea of saddle-point approximations.

3 Singular Variance Gamma ex-
pansion

We now apply the expansion (15) to the Variance
Gamma option price calculation. First, we define the

normalized Black option value function as the ratio
of the price and the geometric average of forward and
strike:

b(x, ς) : = B(F,K, ς)/
√
FK (19)

= εe
x
2 Φ
(
ε(xς + ς

2 )
)
− εe− x2 Φ

(
ε(xς −

ς
2 )
)
.

In analogy, we define for the Variance Gamma option
value:

v(x, σ, θ, ν, t) := V (F,K, σ, θ, ν, t)/
√
FK (20)

=
∫
ψγ(g; t, ν)e

1
2 (ωt+θ̃g)b(x+ ωt+ θ̃g, σ

√
g) dg .

Application of equation (16) to first order in ν, after
some algebraic simplification, yields

v(x, σ, θ, ν, t) = (21)

b+
[
x2

4ς − (xς −
ς
2 )θ̃t− ς

4 ( ς
2

4 + 1) + θ̃2t2

ς

]
∂ςb
2t ν +O(ν2)

with b = b(x, ς)|ς=σ√t and

∂ςb = ∂ςb(x, ς)
∣∣∣
ς=σ
√
t

=
e
− 1

2

„
x2

ς2
+ ς

2
4

«
√

2π

∣∣∣∣
ς=σ
√
t

. (22)

Equation (21) represents the Variance Gamma option
price as the Black option price plus a correction term
of first order in ν. We can translate this into a Black
implied volatility approximation

σ̂VG := σ̂0 + σ̂1ν +O(ν2) (23)

for the Variance Gamma model by equating (21) with

b(x, ς)

∣∣∣∣∣
ς=σ̂VG

√
t

= b(x, ς)

∣∣∣∣∣
ς=σ̂0

√
t

+ ∂ςb(x, ς)

∣∣∣∣∣
ς=σ̂0

√
t

σ̂1

√
t · ν + O(ν2) (24)

to obtain

σ̂0 = σ (25)

σ̂1 = x2

8σt2 −
σ
8 (σ

2

4 + 1
t ) + (σ4 −

x
2σt )θ̃ + θ̃2

2σ . (26)

The simplicity of this procedure makes it easy to
utilize the power of modern computer algebra sys-
tems to derive higher order expansions for σ̂VG. In
appendix A, we give the approximation up to order
O(ν5) derived using the open source software Max-
ima [Max]. The Maxima code [Jäc09] used for our
calculations is straightforward and should be easy to
translate to other computer algebra systems.

Of particular interest in analytical approximations
for implied volatilities for any model are the at-the-
money volatility

σ̂VG

∣∣∣∣∣
K=S0

= σ +
(
−σ

3

32 + σθ̃
4 + θ̃2

2σ −
σ
8t

)
ν (27)

+
(

13σ5

6144 −
3σ3θ̃
128 + 9σθ̃2

64 + 3θ̃3

8σ −
θ̃4

8σ3

+ σ
128t2 + σ3

192t −
σθ̃
32t + θ̃2

16σt

)
ν2 +O(ν3) ,
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the (proportional) at-the-money skew

1
K dK σ̂VG

∣∣∣∣∣
K=S0

= − dxσ̂VG

∣∣∣∣∣
K=S0

(28)

= θ̃
2σtν

[
1 +

(
σ2

32 + 3
8t + θ̃

4 −
5θ̃2

6σ2

)
ν
]

+O(ν3) ,

and the (proportional) at-the-money smile curvature

1
K2 d2

K σ̂VG

∣∣∣∣∣
K=S0

= dxσ̂VG

∣∣∣∣∣
K=S0

+ d2
xσ̂VG

∣∣∣∣∣
K=S0

(29)

=
(

1
4σt2 −

θ̃
2σt

)
ν

+
(

3
16σt3 + 5σ

384t2 −
θ̃

4σt2 −
9θ̃2

8σ3t2

− σθ̃
64t −

θ̃2

8σt + 5θ̃3

12σ3t

)
ν2 +O(ν3) .

We can see that, to first order, the skew is given by
1
2
θ̃ν
σt and thus decays like 1/t. For θ̃ = 0, the at-the-

money smile curvature is 1
4
ν
σt2

which means that the
smile decays like 1/t2.

3.1 Time-dependent parameters

In practice, one may wish to use the Variance Gamma
model with time-dependent parameters σ(t), θ(t) and
ν(t) for greater flexibility. Starting with the simpli-
fied two-epoch setting in which the Variance Gamma
process has constant parameters σ1, θ1, and ν1 be-
tween t = 0 and t = τ1, and constant parameters
σ2, θ2, and ν2 between t = τ1 and t = τ1 + τ2, it is
tempting to base a time dependency approximation
on the Taylor expansion of (5) in ν:

φVG(u) = e(iuθ−u2 σ2
2 )t (30)

·
[
1 +

(
1
8σ

4u4 − i 1
2σ

2θu3 − 1
2θ

2u2
)
tν +O(ν2)

]
.

Expanding the product of the characteristic functions
for the transition densities over the two time steps,
and matching it with the characteristic function for a
single step transition density from t = 0 to t = τ1+τ2,
one may wish to attempt using

σ̄ =
√

(σ2
1τ1 + σ2

2τ2)/ (τ1 + τ2) (31)

θ̄ = (θ1τ1 + θ2τ2)/ (τ1 + τ2) (32)

ν̄ =
ν1σ

4
1τ1 + ν2σ

4
2τ2

σ̄4 · (τ1 + τ2)
(33)

in order to match the exponential terms and highest
power in u within first order in ν. If we extend this to
multiple time steps with different parameters levels,
and ultimately take it to the limit of infinitely many
infinitesimal time steps, we arrive at the first order
parameter averaging rule

σ̄(T ) =

√∫ T
0
σ2(t)dt

/
T (34)

θ̄(T ) =
∫ T

0
θ(t)dt

/
T (35)

ν̄(T ) =

∫ T
0
σ4(t)ν(t)dt
σ̄4(T ) · T

(36)

for arbitrarily time-dependent (instaneous) process
parameters σ(t), θ(t), and ν(t). In practice, how-
ever, we found that this approximation only works
for mildly varying parameters.

An alternative approach is to repeat the singular
expansion in two gamma variates. This gives, after
considerable algebraic simplification, to first order in
both ν1 and ν2,

σ̂VG ≈ σ̂0 + σ4
1τ1ν1+σ4

2τ2ν2
σ̂4
0T

(
x2

8σ̂0T 2 − σ̂0
8 ( σ̂

2
0
4 + 1

T )
)

(37)

+ σ2
1τ1θ̃1ν1+σ2

2τ2θ̃2ν2
σ̂2
0T

( σ̂0
4 −

x
2σ̂0T

) + θ̃21τ1ν1+θ̃22τ2ν2
2σ̂0T

,

with

σ̂0 =
√

(σ2
1τ1 + σ2

2τ2)/ (τ1 + τ2) , (38)

θ̃i = θi + σ2
i /2 (39)

T = τ1 + τ2 . (40)

From here, it is a matter of exceptionally tedious but
unsurprising calculations to prove that this general-
izes to

σ̂VG ≈ σ̂0 +
R T
0 σ

4(t)ν(t)dt

σ̂4
0 ·T

(
x2

8σ̂0T 2 − σ̂0
8 ( σ̂

2
0
4 + 1

T )
)

(41)

+
R T
0 σ

4(t)θ̃(t)ν(t)dt

σ̂2
0 ·T

( σ̂0
4 −

x
2σ̂0T

) +
R T
0 θ̃(t)ν(t)dt

2σ̂0T
,

with

σ̂0 =

√∫ T
0
σ2(t)dt

/
T , (42)

θ̃(t) = θ(t) + σ2(t)/2 , (43)

to first order in ν(t) for the arbitrarily time-
dependent case.

4 Numerical examples

In figures 1 to 6, we can see the quality of the ana-
lytical approximations of orders up to O(ν5) for σ =
25%, θ = −1/4, ν = 1/10, and t = 10, 5, 1, 1

2 ,
1
4 ,

1
10 .

In figure 8, we show the quality of the analytical ap-
proximation for the at-the-money volatility for the
same parameters as in figures 1 to 6, and similarly
we show the at-the-money skew and at-the-money
smile curvature in figures 9 and 10. It is clear that
the strike range of validity shrinks as t decreases, and
that for t . ν, the approximation breaks down.

Finally, we show in figures 11 and 12 two exam-
ples for the quality of the time-average parameter
approximations (31) to (33) and the time-dependent
parameter expansion (37).

5 Conclusion

We presented an analytical approximation for Black
implied volatilies generated by the Variance Gamma
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Figure 1: Implied volatilities as a function ofK/S0 for Variance
Gamma model with t = 10, σ = 25%, θ = −1/4, ν = 1/10.
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Figure 2: Implied volatilities as a function ofK/S0 for Variance
Gamma model with t = 5, σ = 25%, θ = −1/4, ν = 1/10.
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Figure 3: Implied volatilities as a function ofK/S0 for Variance
Gamma model with t = 1, σ = 25%, θ = −1/4, ν = 1/10.
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Figure 4: Implied volatilities as a function ofK/S0 for Variance
Gamma model with t = 1/2, σ = 25%, θ = −1/4, ν = 1/10.
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Figure 5: Implied volatilities as a function ofK/S0 for Variance
Gamma model with t = 1/4, σ = 25%, θ = −1/4, ν = 1/10.
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Figure 6: Implied volatilities as a function ofK/S0 for Variance
Gamma model with t = 1/10, σ = 25%, θ = −1/4, ν = 1/10.
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Figure 7: Implied volatilities as a function ofK/S0 for Variance
Gamma model with t = 1/12, σ = 25%, θ = −1/4, ν = 1/10.
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Figure 8: At-the-money implied volatility σ̂VG|K=S0 as a func-
tion of t for σ = 25%, θ = −1/4, ν = 1/10.
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Figure 9: At-the-money implied volatility skew 1
S0

dK σ̂VG|K=S0

as a function of t for σ = 25%, θ = −1/4, ν = 1/10.
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Figure 10: At-the-money smile curvature 1
S2
0
d2

K σ̂VG|K=S0 as a

function of t for σ = 25%, θ = −1/4, ν = 1/10.
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Figure 11: Implied volatilities for piecewise constant parame-
ters with σ1 = 25%, θ1 = −0.15, ν1 = 0.1, τ1 = 0.5, σ2 = 20%,
θ2 = −0.2, ν2 = 0.15, and τ2 = 0.5. The curves labelled
“1st order” to “5th order” are generated using the constant
parameter expansion with the time-averaged parameters given
in (31) to (33). The curve labelled “1st order (two epochs)”

corresponds to expansion (37).

model [MCC98] based on a singular expansion of the
gamma density. The approach is in spirit not too dis-
similar to saddle-point approximations but requires
no numerical calculations whatsoever, not even a one-
dimensional root finding as would be needed for con-
ventional saddle-point calculations. The mechanis-
tic nature of the used methodology makes it readily

22%

23%

24%

25%

26%

27%

0.6 0.8 1 1.2 1.4 1.6 1.8
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1st order
2nd order
3rd order
4th order
5th order
1st order (two epochs)

Figure 12: Implied volatilities for piecewise constant parame-
ters with σ1 = 25%, θ1 = −0.1, ν1 = 0.1, τ1 = 0.5, σ2 = 20%,
θ2 = 0.2, ν2 = 0.2, and τ2 = 0.5. The curves labelled “1st
order” to “5th order” are generated using the constant pa-
rameter expansion with the time-averaged parameters given
in (31) to (33). The curve labelled “1st order (two epochs)”

corresponds to expansion (37).

amenable to the use of computer algebra systems. We
used the open source system Maxima for our compu-
tations, though, the code could easily be translated
to any other symbolic mathematics package.

The results we obtained give an insight into the
asymptotic behaviour for ν

t � 1, i.e., for ν small or
t sizeable. In particular, we obtain accurate explicit
results for the at-the-money volatility, the skew, and
the curvature of the implied volatility smile generated
by the Variance Gamma model. For short maturities
t < ν, the quality of the results breaks down due to
the fact that the gamma density loses its uni-modal
shape that is the basis of its expansion in terms of
the Dirac distribution and its derivatives.

It remains to be seen to what extent the presented
results can be of practical use beyond giving an ana-
lytically precise understanding of the asymptotic be-
haviour of the Variance Gamma model for small ν/t.

A Fifth order expansion for σ̂VG

The Black implied volatility for the Variance Gamma
option price is given by

σ̂VG ≈ σ̂0 + σ̂1ν + σ̂2ν
2 + σ̂3ν

3 + σ̂4ν
4 + σ̂5ν

5 (44)

with

σ̂0 = σ (45)

σ̂1 = x2

8σt2 −
σ
8 (σ

2

4 + 1
t ) + (σ4 −

x
2σt )θ̃ + θ̃2

2σ (46)

σ̂2 = 13σ5

6144 −
3σ3θ̃
128 + 9σθ̃2

64 + 3θ̃3

8σ −
θ̃4

8σ3 + σ
128t2 + σ3

192t −
σθ̃
32t +

θ̃2

16σt −
3θ̃x

16σt2 −
σθ̃x
64t −

θ̃2x
8σt + 5θ̃3x

12σ3t + 3x2

32σt3 + 5σx2

768t2 −
θ̃x2

32σt2 −
9θ̃2x2

16σ3t2 + 5θ̃x3

16σ3t3 −
23x4

384σ3t4

(47)
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σ̂3 = − 35σ7

196608 + 65σ5θ̃
24576 −

223σ3θ̃2

12288 + 25σθ̃3

256 + 215θ̃4

768σ −
5θ̃5

32σ3 +
θ̃6

16σ5 + 5σ
1024t3−

σ3

12288t2 + σθ̃
512t2 + 13θ̃2

256σt2−
19σ5

49152t+ σ3θ̃
256t−

3σθ̃2

256t + 3θ̃3

64σt −
11θ̃4

64σ3t −
25θ̃x

256σt3 −
σθ̃x

128t2 −
3θ̃2x
64σt2 + 23θ̃3x

32σ3t2 +
7σ3θ̃x
12288t−

3σθ̃2x
256t −

5θ̃3x
384σt+

5θ̃4x
16σ3t−

7θ̃5x
16σ5t+

55x2

1024σt4 + 9σx2

2048t3−
3θ̃x2

128σt3 −
17θ̃2x2

16σ3t3 −
11σ3x2

49152t2 + 5σθ̃x2

3072t2 −
127θ̃2x2

1536σt2 −
9θ̃3x2

64σ3t2 +
75θ̃4x2

64σ5t2 + 43θ̃x3

64σ3t4 + 67θ̃x3

1536σt3 −
5θ̃2x3

64σ3t3 −
49θ̃3x3

32σ5t3 −
467x4

3072σ3t5 −
113x4

12288σt4 + 23θ̃x4

512σ3t4 + 271θ̃2x4

256σ5t4 −
95θ̃x5

256σ5t5 + 53x6

1024σ5t6

(48)

σ̂4 = 6271σ9

377487360 −
245σ7θ̃
786432 + 1055σ5θ̃2

393216 −
721σ3θ̃3

49152 + 3667σθ̃4

49152 +
665θ̃5

3072σ −
683θ̃6

4608σ3 + 7θ̃7

64σ5 − 5θ̃8

128σ7 − 21σ
32768t4 −

7σ3

24576t3 +
5σθ̃

4096t3 + 55θ̃2

2048σt3−
17σ5

3932160t2−
σ3θ̃

16384t2 + 27σθ̃2

8192t2 + 39θ̃3

1024σt2−
289θ̃4

1024σ3t2 + 403σ7

11796480t−
95σ5θ̃

196608t+
275σ3θ̃2

98304t −
5σθ̃3

1024t+
3θ̃4

256σt−
55θ̃5

256σ3t+ 103θ̃6

384σ5t−
105θ̃x

2048σt4 −
35σθ̃x
8192t3 −

25θ̃2x
1024σt3 + 1745θ̃3x

1536σ3t3 +
9σ3θ̃x

32768t2−
3σθ̃2x
512t2 + 121θ̃3x

1536σt2 + 69θ̃4x
128σ3t2−

1141θ̃5x
640σ5t2 −

5σ5θ̃x
131072t+

35σ3θ̃2x
49152t −

623σθ̃3x
73728t + 35θ̃4x

1536σt + 377θ̃5x
2560σ3t −

35θ̃6x
64σ5t + 15θ̃7x

32σ7t +
105x2

4096σt5 + 203σx2

98304t4 −
55θ̃x2

4096σt4 −
3479θ̃2x2

2048σ3t4 −
251σ3x2

1474560t3 +
9σθ̃x2

8192t3 −
1979θ̃2x2

12288σt3 −
17θ̃3x2

64σ3t3 + 1195θ̃4x2

256σ5t3 + 113σ5x2

7864320t2 −
11σ3θ̃x2

65536t2 −
3σθ̃2x2

32768t2 −
123θ̃3x2

2048σt2 + 1171θ̃4x2

6144σ3t2 + 225θ̃5x2

256σ5t2 −
767θ̃6x2

384σ7t2 + 2283θ̃x3

2048σ3t5 + 1225θ̃x3

12288σt4 −
43θ̃2x3

256σ3t4 −
601θ̃3x3

96σ5t4 +
61σθ̃x3

98304t3 + 67θ̃2x3

6144σt3 −
3479θ̃3x3

9216σ3t3 −
49θ̃4x3

128σ5t3 + 2787θ̃5x3

640σ7t3 −
4427x4

16384σ3t6 −
1163x4

49152σt5 + 467θ̃x4

4096σ3t5 + 9345θ̃2x4

2048σ5t5 −
223σx4

1310720t4 +
113θ̃x4

49152σt4 + 2087θ̃2x4

8192σ3t4 −
271θ̃3x4

1024σ5t4 −
5683θ̃4x4

1024σ7t4 −
3519θ̃x5

2048σ5t6 −
2269θ̃x5

24576σ3t5 + 285θ̃2x5

1024σ5t5 + 6623θ̃3x5

1536σ7t5 + 1003x6

3840σ5t7 + 19919x6

1474560σ3t6−
265θ̃x6

4096σ5t6 −
4121θ̃2x6

2048σ7t6 + 1061θ̃x7

2048σ7t7 −
27763x8

491520σ7t8

(49)

σ̂5 = − 2211σ11

1342177280 + 6271σ9θ̃
167772160 −

32929σ7θ̃2

83886080 + 1345σ5θ̃3

524288 −
57803σ3θ̃4

4718592 + 3945σθ̃5

65536 + 256031θ̃6

1474560σ −
263θ̃7

2048σ3 + 1559θ̃8

12288σ5 −
45θ̃9

512σ7 + 7θ̃10

256σ9 − 399σ
262144t5 −

79σ3

1048576t4 −
21σθ̃

131072t4 +
819θ̃2

65536σt4 + 649σ5

31457280t3 −
7σ3θ̃

32768t3 + 51σθ̃2

32768t3 + 165θ̃3

8192σt3 −
3545θ̃4

8192σ3t3 + 367σ7

377487360t2 −
17σ5θ̃

3145728t2 −
221σ3θ̃2

1572864t2 +
115σθ̃3

32768t2 −
1291θ̃4

98304σt2 −
1445θ̃5

4096σ3t2 + 5431θ̃6

6144σ5t2 −
3313σ9

1006632960t +
2821σ7θ̃

47185920t −
2801σ5θ̃2

5898240t + 805σ3θ̃3

393216t −
291σθ̃4

131072t −
7θ̃5

512σt −
943θ̃6

6144σ3t + 721θ̃7

1536σ5t −
1145θ̃8

3072σ7t −
1659θ̃x

65536σt5 −
33σθ̃x

16384t4 −
105θ̃2x
8192σt4 + 7105θ̃3x

4096σ3t4 + 257σ3θ̃x
1572864t3 −

105σθ̃2x
32768t3 + 2627θ̃3x

16384σt3 +
1745θ̃4x
2048σ3t3 −

11391θ̃5x
2048σ5t3 −

421σ5θ̃x
23592960t2 + 45σ3θ̃2x

131072t2 −
189σθ̃3x
65536t2 +

695θ̃4x
6144σt2 −

17θ̃5x
640σ3t2 −

1141θ̃6x
512σ5t2 + 2753θ̃7x

768σ7t2 + 787σ7θ̃x
251658240t −

35σ5θ̃2x
524288t + 1681σ3θ̃3x

2359296t −
1841σθ̃4x
294912t + 8819θ̃5x

294912σt + 917θ̃6x
30720σ3t −

6293θ̃7x
15360σ5t + 105θ̃8x

128σ7t −
385θ̃9x
768σ9t + 2919x2

262144σt6 + 209σx2

262144t5 −
105θ̃x2

16384σt5−
2661θ̃2x2

1024σ3t5 −
1657σ3x2

18874368t4 + 203σθ̃x2

393216t4−
51845θ̃2x2

196608σt4 −
3479θ̃3x2

8192σ3t4 + 116917θ̃4x2

8192σ5t4 + 2171σ5x2

188743680t3 −
251σ3θ̃x2

1966080t3 −
3827σθ̃2x2

1966080t3 −
1955θ̃3x2

16384σt3 + 50665θ̃4x2

49152σ3t3 + 3585θ̃5x2

1024σ5t3−
10783θ̃6x2

768σ7t3 −
1147σ7x2

1006632960t2 + 113σ5θ̃x2

6291456t2 −
355σ3θ̃2x2

3145728t2 −
245σθ̃3x2

393216t2 · · ·

− 3811θ̃4x2

131072σt2 + 6935θ̃5x2

24576σ3t2 + 1837θ̃6x2

61440σ5t2 −
3835θ̃7x2

1536σ7t2 +
9401θ̃8x2

3072σ9t2 + 14121θ̃x3

8192σ3t6 + 11255θ̃x3

65536σt5 −
2283θ̃2x3

8192σ3t5 −
78479θ̃3x3

4096σ5t5 +
1651σθ̃x3

983040t4 + 1225θ̃2x3

49152σt4−
119999θ̃3x3

73728σ3t4 −
601θ̃4x3

384σ5t4 + 229901θ̃5x3

7680σ7t4 −
11σ3θ̃x3

1048576t3 + 61σθ̃2x3

131072t3−
10111θ̃3x3

589824σt3−
3419θ̃4x3

12288σ3t3 + 76489θ̃5x3

61440σ5t3 +
8361θ̃6x3

2560σ7t3 −
37267θ̃7x3

3840σ9t3 − 56033x4

131072σ3t7 −
22231x4

524288σt6 +
13281θ̃x4

65536σ3t6 + 465637θ̃2x4

32768σ5t6 −
4617σx4

10485760t5 + 1163θ̃x4

196608σt5 +
57457θ̃2x4

49152σ3t5 −
9345θ̃3x4

8192σ5t5 −
944569θ̃4x4

24576σ7t5 + 153σ3x4

41943040t4 −
223σθ̃x4

5242880t4 + 135931θ̃2x4

7864320σt4 + 6353θ̃3x4

98304σ3t4 −
191603θ̃4x4

98304σ5t4 −
5683θ̃5x4

4096σ7t4 + 191627θ̃6x4

10240σ9t4 − 180945θ̃x5

32768σ5t7 −
43979θ̃x5

98304σ3t6 +
10557θ̃2x5

8192σ5t6 + 125435θ̃3x5

4096σ7t6 − 49651θ̃x5

7864320σt5 + 2269θ̃2x5

98304σ3t5 +
24451θ̃3x5

16384σ5t5 −
6623θ̃4x5

6144σ7t5 −
721079θ̃5x5

30720σ9t5 + 1725811x6

1966080σ5t8 +
825139x6

11796480σ3t7 −
1003θ̃x6

3072σ5t7 −
364711θ̃2x6

24576σ7t7 + 10303x6

10485760σt6 −
19919θ̃x6

1966080σ3t6 −
227273θ̃2x6

327680σ5t6 + 12363θ̃3x6

8192σ7t6 + 482485θ̃4x6

24576σ9t6 +
3077θ̃x7

768σ7t8 + 183839θ̃x7

983040σ5t7 −
5305θ̃2x7

8192σ7t7 −
133775θ̃3x7

12288σ9t7 −
363149x8

786432σ7t9 −
330557x8

15728640σ5t8 + 194341θ̃x8

1966080σ7t8 + 3781141θ̃2x8

983040σ9t8 −
770581θ̃x9

983040σ9t9 + 91867x10

1310720σ9t10

(50)
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