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Abstract

We give an analytical expansion for option prices and
Black implied volatilities consistent with the Variance
Gamma model [MCC98] based on a singular expan-
sion of the standard gamma density in terms of the
Dirac functions and its derivatives.

1 Introduction

The Variance Gamma option pricing model [MCC98]
can be viewed as a geometric Brownian motion that
is time-changed by a Gamma process. Formulated as
a martingale, an asset price Sy at time t = 0 advances

to
(1)

at time ¢, with W, being a standard Wiener process
to time 7, 4 being a gamma process with

St — SO . ewt+0’y¢+aWﬂ,t

Elye] =t Viy] = vt (2)
and
w=I(1-(0+7*/2w)/v. (3)
The density of the gamma process is
Uy(gitiy) = of B2 /g (4)
and its characteristic function is
6r0) = [ gty = (L= i) F . (5)

Madan, Carr, and Chang [MCC98] give “closed” form
solutions for European call and put option prices un-
der this model in terms of the degenerate hyperge-
ometric function of two variables and the modified
Bessel function of the second kind. As is well docu-
mented, and frequently discussed on internet forums,
generic numerical implementations of these special
functions tend to be either unstable, or resort to
numerically intensive internal schemes. An alterna-
tive method for the calculation of option prices is
to use the characteristic function of the logarithm
X := 0y + oW, of the asset process given by
dve(u) = (1 — ibur + 02uzu/2)7’i’
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together with a Fourier transform of the payoff as
suggested by Carr and Madan [CM99]. Alas, this
approach is also known to be numerically highly un-
stable unless one can find an analytical approxima-
tion for an optimal shift of the contour integral in the
complex domain as described by Lord and Kahl using
the example of the Heston model [LK07]. The most
viable method for numerical evaluation of European
call and put option prices is considered to exploit the
fact that, conditional on a given gamma variate -y,
the density is lognormal, as mentioned in [MCC98],
and to integrate standard Black call or put option
prices with a modified variance and forward over the
gamma density. This gives us

V(507K70707V7t):/w"/(g;tay)B(Fg7Kag\/§)dg (7)
for the Variance Gamma option price with

B(F,K,q) = eF® (e(2+5)) —eK®(e(2-5)) (8
(

)

e = %1 for calls/puts 9)
x=In(F/K) (10)
F, = Spe~t+09 (11)
0=0+02/2. (12)

Whilst this approach is viable, it also requires due
diligence and care in its implementation, and needs
tens of thousands of Black function evaluations to
be robust [Sta05], though this number is likely to be
reduced significantly if adaptive quadrature schemes
are employed. The crux with all of the known meth-
ods is that in many applications the kurtosis param-
eter v of Variance Gamma model is set to be a small
number which gives rise to the gamma density to be
very peaked, unless one considers very short option
expiries that are equal to or even smaller than v. In
addition to this outright practical aspect, it is usually
also considered desirable to have an implementation
that provides a smooth continuity to the standard
Black function (8) as v is gradually reduced to zero.
This, however, is numerically the hardest part since
the gamma density, in this limit, converges to a Dirac
distribution centered at .

In this note, we give an alternative view on the
FEuropean option pricing problem with the Variance



Gamma model that has its own advantages and short-
comings, as we shall see. It is based on a singular
expansion of the gamma density which is worth men-
tioning in its own right as it can be applied in any
context.

2 Singular expansion of the

gamma density

We begin by noting that the gamma density permits
no regular expansion for small values of v since, as
mentioned, it converges to a Dirac function for v —
0. In contrast, however, its characteristic function
is well behaved for small v as it allows the Taylor
expansion in v

¢y (u) = e™t [1—u2%y+(u4%—iu3§)y2+... (13)

Our next observation is

e (ju)k = dfe™! = / eI(~1)k W (g —t)dg  (14)

where 6()(.) represents the k-th derivative of the
Dirac function. By identification of terms, we there-
fore arrive at an expansion of the gamma density in
v in terms of the Dirac function and its derivatives:

Uy(git,v) =8(g —t) +v- 56@ (g — 1) (15)
+02 (§69(g 1) - 45 (g - 1) + O

As is the nature with all functions that involve Dirac
terms, this expansion does of course make no sense if
we needed to evaluate it directly by virtue of the fact
that it consists of series of exclusively singular contri-
butions. However, any integral over the gamma den-
sity with this expansion results in a perfectly sensible
series in terms of the integrand and its derivatives:

/ U (g:t0) f(g)dg = F(2) + vL (1)

+ 2 (570 + 5190) + 0.

(16)

Remark. By the same token, we can derive for the
Gauss density

p(z0) = e HE) [ (ov/2m)

=0(2) + 50" (2) + S 0D (2) + 5260 (2) + O(0®)
(18)

(17)

which is closely related, or arguably equivalent, to
the idea of saddle-point approximations.

3 Singular Variance Gamma ex-
pansion

We now apply the expansion (15) to the Variance
Gamma option price calculation. First, we define the

normalized Black option value function as the ratio
of the price and the geometric average of forward and
strike:
b(z,¢): = B(F,K,s)/VFK
=2 d (e(% +5)) - e D (e(% -5)) -

(19)

In analogy, we define for the Variance Gamma option
value:

v(z,0,0,v,t) :=V(F,K,0,0,v,1)/VFK

= /wfy(g; t, V)e%(”“rég)b(a: +wt +60g,0/9)dg.

(20)

Application of equation (16) to first order in v, after
some algebraic simplification, yields

v(z,0,0,v,t) = (21)
b+ [ - (2 - 90t - 505 + D+ Z2) G+ 00
with b = b(z,<)| _, 7 and
db = 9:b(z, <) - SHE) (22)
N s=0v/t B \/27‘(’ cZa\/f'

Equation (21) represents the Variance Gamma option
price as the Black option price plus a correction term
of first order in v. We can translate this into a Black
implied volatility approximation

byve = 00 + 610 + O(V?) (23)

for the Variance Gamma model by equating (21) with

b(x,<)| = blz,q)| + db(x,q)| 61Vt v + OW?) (24)
s=éyg Vi s=69Vt s=&9Vt
to obtain
5‘0 =0 (25)
n=gE - SE D gL (20

The simplicity of this procedure makes it easy to
utilize the power of modern computer algebra sys-
tems to derive higher order expansions for &ye. In
appendix A, we give the approximation up to order
O(v°) derived using the open source software Max-
ima [Max]|. The Maxima code [Jac09] used for our
calculations is straightforward and should be easy to

translate to other computer algebra systems.

Of particular interest in analytical approximations
for implied volatilities for any model are the at-the-
money volatility
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the (proportional) at-the-money skew

Ldgdve| = —dubve (28)
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and the (proportional) at-the-money smile curvature
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We can see that, to first order, the skew is given by
%g@ and thus decays like 1/t For 6 = 0, the at-the-
money smile curvature is 411 —z which means that the

smile decays like 1/t2.

3.1 Time-dependent parameters

In practice, one may wish to use the Variance Gamma
model with time-dependent parameters o(t), 6(¢) and
v(t) for greater flexibility. Starting with the simpli-
fied two-epoch setting in which the Variance Gamma
process has constant parameters o1, 61, and v; be-
tween t = 0 and t = 71, and constant parameters
09, 02, and vy between t = 71 and t = 71 + 79, it is
tempting to base a time dependency approximation
on the Taylor expansion of (5) in v:

Duo(u) = elit0 =)
. [1 + (51;04u4

(30)

Expanding the product of the characteristic functions
for the transition densities over the two time steps,
and matching it with the characteristic function for a
single step transition density from t = 0 to t = 71+ 72,
one may wish to attempt using

6 =/ (037 +o3m)/ (r1 +72) (31)
0= (917’1—‘1-927’2)/ (Tl —l—Tg) (32)
5= 1/10'4117'14*1/20%7'2 (33)

o4 - (Tl -‘1-7'2)

in order to match the exponential terms and highest
power in u within first order in v. If we extend this to
multiple time steps with different parameters levels,
and ultimately take it to the limit of infinitely many
infinitesimal time steps, we arrive at the first order
parameter averaging rule

o(T) =V [To(t)dt / T (34)
6(T) = [To(t)dt / T (35)

i10%0u® — $0°u*) tv + O(V?)] .

[T ot (tw(t)at

uT) = (T - T

(36)
for arbitrarily time-dependent (instaneous) process
parameters o(t), 0(t), and v(t). In practice, how-
ever, we found that this approximation only works
for mildly varying parameters.

An alternative approach is to repeat the singular
expansion in two gamma variates. This gives, after
considerable algebraic simplification, to first order in
both v; and v,

o T1V1+027'21/2 z? &o (50 1
Ove & 0o+ 53T (8&0T2 -2(ZF+7)) 370
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26501 d
with
G0 = \/(O‘%Tl +0279)/ (11 + 72) , (38)
0; =0; +02/2 (39)
T = T+ T2 . (40)

From here, it is a matter of exceptionally tedious but
unsurprising calculations to prove that this general-
izes to

o) 5 Lot (v (t)d T G0 1 G2
v > 00+ LGN (e (1 4)) @
Lot (00 (t)dt . (1) (1)t
+ 62T (TO o 2[70T) + = 2601 )
with
&0 \/T/T (42)
0(t) =0(t) + o*(t)/2 , (43)

to first order in wv(t) for the arbitrarily time-
dependent case.

4 Numerical examples

In figures 1 to 6, we can see the quality of the ana-
lytical approximations of orders up to O(v°) for o =
25%, 6 = —1/4, v = 1/10, and t = 10,5,1, 3, 1, &.
In figure 8, we show the quality of the analytical ap-
proximation for the at-the-money volatility for the
same parameters as in figures 1 to 6, and similarly
we show the at-the-money skew and at-the-money
smile curvature in figures 9 and 10. It is clear that
the strike range of validity shrinks as ¢ decreases, and
that for ¢ < v, the approximation breaks down.

Finally, we show in figures 11 and 12 two exam-
ples for the quality of the time-average parameter
approximations (31) to (33) and the time-dependent
parameter expansion (37).

5 Conclusion

We presented an analytical approximation for Black
implied volatilies generated by the Variance Gamma
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Figure 1: Implied volatilities as a function of K /Sy for Variance
Gamma model with ¢t = 10, 0 = 25%, § = —1/4, v = 1/10.
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Figure 2: Implied volatilities as a function of K /Sy for Variance
Gamma model with t =5, 0 = 25%, § = —1/4, v = 1/10.
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Figure 3: Implied volatilities as a function of K /Sy for Variance
Gamma model with t =1, 0 = 25%, § = —1/4, v = 1/10.
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Figure 4: Implied volatilities as a function of K /Sy for Variance
Gamma model with ¢t =1/2, 0 = 25%, § = —1/4, v = 1/10.
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Implied volatilities as a function of K/So for Variance

Gamma model with ¢t =1/4, 0 = 25%, 6 = —1/4, v = 1/10.
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Figure 6: Implied volatilities as a function of K /Sy for Variance
Gamma model with ¢t =1/10, o = 25%, 6§ = —1/4, v = 1/10.
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Figure 7: Implied volatilities as a function of K /Sy for Variance
Gamma model with t =1/12, 0 = 25%, 6 = —1/4, v = 1/10.
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Figure 8: At-the-money implied volatility 6ve|k=s, as a func-
tion of ¢t for o = 25%, 0 = —1/4, v = 1/10.
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Figure 9: At-the-money implied volatility skew S%d KOva|r=s,
as a function of ¢ for o = 25%, 6 = —1/4, v = 1/10.
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Figure 10: At-the-money smile curvature éd%{&vc‘[(:so as a
function of ¢ for o = 25%, 6 = —1/4, v = 1/10.
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Figure 11: Implied volatilities for piecewise constant parame-

ters with o1 = 25%, 61 = —0.15, v, = 0.1, 7, = 0.5, 02 = 20%,

0 = —0.2, v = 0.15, and 72 = 0.5. The curves labelled

“lst order” to “Sth order” are generated using the constant

parameter expansion with the time-averaged parameters given

in (31) to (33). The curve labelled “Ist order (two epochs)”
corresponds to expansion (37).

model [MCC98]| based on a singular expansion of the
gamma density. The approach is in spirit not too dis-
similar to saddle-point approximations but requires
no numerical calculations whatsoever, not even a one-
dimensional root finding as would be needed for con-
ventional saddle-point calculations. The mechanis-
tic nature of the used methodology makes it readily
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Figure 12: Implied volatilities for piecewise constant parame-

ters with o1 = 256%, 61 = —0.1, vy = 0.1, 71 = 0.5, 02 = 20%,

02 = 0.2, 12 = 0.2, and 72 = 0.5. The curves labelled “lst

order” to “5th order” are generated using the constant pa-

rameter expansion with the time-averaged parameters given

in (31) to (33). The curve labelled “lst order (two epochs)”
corresponds to expansion (37).

amenable to the use of computer algebra systems. We
used the open source system Maxima for our compu-
tations, though, the code could easily be translated
to any other symbolic mathematics package.

The results we obtained give an insight into the
asymptotic behaviour for ¥ < 1, i.e., for v small or
t sizeable. In particular, we obtain accurate explicit
results for the at-the-money volatility, the skew, and
the curvature of the implied volatility smile generated
by the Variance Gamma model. For short maturities
t < v, the quality of the results breaks down due to
the fact that the gamma density loses its uni-modal
shape that is the basis of its expansion in terms of
the Dirac distribution and its derivatives.

It remains to be seen to what extent the presented
results can be of practical use beyond giving an ana-
lytically precise understanding of the asymptotic be-
haviour of the Variance Gamma model for small v/¢.

A Fifth order expansion for 7,

The Black implied volatility for the Variance Gamma
option price is given by
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4915253t5 819205¢5 24576575 41943040t%
22300z + 135931622 + 63536°z*  1916030%a*
5242880t% 786432007 9830453t% 9830455t%
56830° z* + 1916276%2z*  1809450z°  4397902° +
409657 t7 1024009¢% 3276805t7 98304030
10557025 + 1254356%2° _ 496510x° + 226902 x° +
81925510 4096570 786432005 983040315
244510%z°  66236%2°  7210796°2° + 17258114° +
16384055 6144075 3072009¢5 19660800528
825139z°%  100362° 36471162z + 10303z°
11796480037 3072057 2457657t7 1048576006
1991962% 2272736225 + 123636°2° + 4824850 z° +
19660800310 327680000 8192076 24576596
30770z" + 1838390x7 _ 53050%x7 _ 1337756%z7
76857 t8 983040057 8192577 122880597
3631492% 3305572 + 194341628 +3781141§2x8
78643207t9 ~ 15728640055 ' 196608007t% ' 98304009¢5
77058162° + 91867x1°
98304009¢% T 13107205°¢10
(50)
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