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I. Hybrid products for retail and wholesale investors

Both retail and wholesale investors show demand for capital guaranteed notes
with participation in the

best of or a ranked weighting of

performances of different underlyings such as:-

• (averaged) equity

• inflation indices

• FX rates

• commodity returns

• total returns on fixed income products

I. Hybrid products for retail and wholesale investors Peter Jäckel
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II. Minimal process assumption valuation

One of the greatest challenges in hybrid modelling is to accomodate the differing
specific needs in the respective underlying markets.

In particular, for a product involving several different markets, one might have to
combine:-

• local volatility (e.g. equity)

• stochastic volatility (e.g. equity and/or FX)

• mean reversion (e.g. commodity and/or fixed income)

• change-of-measure considerations (most important when fixed income com-
ponents are involved)

II. Minimal process assumption valuation Peter Jäckel
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In the face of the sheer complexity of this task, it helps to go back
to the basics of derivatives trading and hedging:-

• consistent pricing of relevant hedge instruments

(e.g. forwards and plain vanilla options)

• selection of justifiable modelling assumptions

(e.g. co-dependence structure aka correlation)

• considerations regarding enforceable arbitrage

II. Minimal process assumption valuation Peter Jäckel
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Calibration to plain vanilla options

Assuming that we can justify a risk-neutral par forward contract strike, and the
specification of a Black implied volatility surface in the underlying asset classes
as a function of maturity, we know the risk-neutral distribution of each of the
underlyings [BL78] in their own natural measure.

We hereby define the natural measure of any variable the measure that makes
the variable itself a martingale.

For instance, for an equity dependent payoff we would have, in the measure
induced by the choice of numéraire being the zero coupon bond PT (t) maturing
on the option’s payment date T ,

Call = PT (0) · EM(PT )
T

[
(FT (T )−K)+

]
= PT (0) · [FT (0) · Φ (d1)−K · Φ (d2)] (1)

with FT (t) being the par strike of a forward contract maturing at T as seen at

II. Minimal process assumption valuation: Calibration to plain vanilla options Peter Jäckel
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time t (which implies FT (T ) = S(T )) and

d1 :=
lnFT (0)− lnK + 1

2σ̂
2(K,T )T

σ̂(K,T )
√
T

(2)

d2 := d1 − σ̂(K,T )
√
T . (3)

From this we have directly

Prob {FT (T ) > K} = −∂KE
M(PT )
T

[
(FT (T )−K)+

]
(4)

Prob {FT (T ) < K} = 1− Prob {FT (T ) > K} (5)

Prob {FT (T ) < K} = Φ (−d2) + FT (0) ·
√
T · ϕ (d1) · ∂Kσ̂(K,T ) . (6)

II. Minimal process assumption valuation: Calibration to plain vanilla options Peter Jäckel
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We thus gain access to the risk-neutral quantile function

qT (K) := Prob {FT (T ) < K} (7)

which is nothing other than the cumulative probability function.

In other words, the quantile function maps the quantile level to the cumulative
probability.

The inverse quantile function q−1
t (p), in turn, maps the cumulative probability to

the quantile level of the underlying.

The inverse quantile function
q−1
t (p)

enables us to map the quantile of any distribution to the associated level in the
respective underlying consistent with its specific risk-neutral distribution.

Drawing S(t) as q−1
t (u) with u ∼ U(0, 1) ensures that we

reprice all plain vanilla options for all strikes by construction !

II. Minimal process assumption valuation: Calibration to plain vanilla options Peter Jäckel
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Given a payoff formula
π(S(T ))

that only depends on a single fixing, and the risk-neutral distribution of FT (T ) =
S(T ) in its own natural measure whose inducing numéraire be denoted by N ,
the value of the contingency claim that pays π(S(T )) at T is

V = N(0) · EM(N)

T [π(S(T ))/N(T )] (8)

by virtue of the fundamental theorem of asset pricing [HP81]. In terms of calcu-
lus, this means

V = N(0) ·
∫

π(S)
N(T )

q′T (S) dS (9)

V = N(0) ·
∫
π(q−1

T (u))
N(T )

du . (10)

Clearly, q′T (S) = ∂SqT (S) is simply the risk-neutral density of S for maturity T .

II. Minimal process assumption valuation: Calibration to plain vanilla options Peter Jäckel



A practical method for the valuation of a variety of hybrid products 9

The spatial copula
When multiple underlyings are involved, as would be the case in a hybrid deriva-
tive, risk-neutral marginal densities have to be connected to form a multivariate
distribution. A general framework for the specification of the co-dependence of
two marginal distributions is that of a copula.

• In a model that is based on the initial specification of underlying stochastic processes, and
their co-dependence, the interdependence structure of marginal distributions of multiple un-
derlyings on any given observation time is a result of the process assumptions.

• A process-created co-dependence structure is also consistent with the framework of a cop-
ula, only that we have no external direct control on this co-dependence structure.

• We can only modify the process-specific correlation coefficients, and take the effect this has
on the co-dependence of marginal distributions as an output of the model.

• In contrast to that, when we specify the marginal distributions directly, we still have full control
over the co-dependence structure we favour.

• Since the fine structure of co-dependence between underlying assets from different market
segments (such as CPI and equity) is to a large extent unknown, any choice of correla-
tion, whether given by underlying instantaneous processes or by the direct specification of
a copula connecting marginal distributions, is, to some extent, arbitrary, and thus part of the
modelling assumptions that we are free to make.

II. Minimal process assumption valuation: The spatial copula Peter Jäckel
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For reasons of tractability and simplicity we choose the
Gaussian copula for inter-asset co-dependence modelling.

In the special but not uncommon case that we use a Black implied volatility
profile without skew or smile, the connection of the corresponding lognormal
distributions via a Gaussian copula is mathematically exactly what one obtains
from correlated geometric Brownian motions, which is a sensible benchmark
feature to have for the modelling of co-dependence.

Both linear and log-linear correlation coefficients change not only if the connect-
ing copula is altered (structurally or parametrically), but also when the marginal
distributions change independently (change in implied volatility skew or smile).

II. Minimal process assumption valuation: The spatial copula Peter Jäckel
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Ü It is generally advisable to use a rank correlation coefficient as a measure of
co-dependence instead of conventional correlation figures.

One such rank correlation measure is known as Spearman’s rho and is nothing
other than the linear correlation computed from the marginal probabilities, i.e.
ui = q

(i)
T (Si).

Spearman’s rho ρuiuj can be converted from and to the Gaussian correlation
coefficient %zizj directly:-

ρuiuj =
6
π
· arcsin

(
1
2
· %zizj

)
and %zizj = 2 · sin

(π
6
· ρuiuj

)
. (11)

II. Minimal process assumption valuation: The spatial copula Peter Jäckel
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1

-1
1-1

ρuiuj

%zizj
Figure II.1. Spearman’s rho of correlated Gaussian variates. Not quite a straight line, but nearly.

II. Minimal process assumption valuation: The spatial copula Peter Jäckel
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The temporal copula

The quantiles qt(S(t)) for different time horizons t are codependent standard
uniform variates.

t

S2

S1

q
2

q
1

Figure II.2. Blue line: risk-neutral density. Red dashed line: implied volatility.

II. Minimal process assumption valuation: The temporal copula Peter Jäckel
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Define

z(t) := Φ−1(qt(S(t))) (12)

For zero skew and smile, the variates zt are normally distributed with correlation
structure

%̂(ti, tj) =
σ̂(ti)
σ̂(tj)

√
ti
tj

for any ti < tj . (13)

As a lowest order approximation for the codependence
between the different zti, we can use a Gaussian copula!

However,

how do we draw S(t) = q−1
t (Φ(zt)) efficiently?

II. Minimal process assumption valuation: The temporal copula Peter Jäckel
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For each observed time horizon ti:-

1. Solve for a lower limit quantile level Sl(ti) using (7) such that

qti(Sl(ti)) = ε

with ε being a fraction of the smallest uniform number possibly to be drawn
from the uniform number generator, i.e. ε ≈ 2−33.

2. Solve
qti(Su(ti)) = 1− ε

for Su(ti).

3. Using the above endpoints, compute two vectors S[·] and z[·] of associated
interpolation points such that z[k] = Φ−1(qti(S[k])).

4. Instantiate a monotonicity preserving interpolation [Hym83, Kva00] object
that interpolates S = S(z), thus numerically inverting the normal-variate-
equivalent-quantile map.

II. Minimal process assumption valuation: The temporal copula Peter Jäckel
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The required interpolation table can be constructed very efficiently:

//
// Equation (12).
//
double inverseCumulativeNormalOfQuantile(double spot) const;

//
// Given two vectors S[·] and z[·], each initialised with two elements such that
// S[0]=Sl, S[1]=Su, z[0]=Φ−1(qt(Sl)), and z[1]=Φ−1(qt(Su)), recursively insert points
// until linear interpolation is sufficiently accurate. Invoke with location=1.
//
void insertAtLeastOneMorePoint( std::vector <double> & S, std::vector <double> & z,

unsigned long location, double accuracy ) {

const double z_mid = 0.5*(z[location-1]+z[location]);

S.insert( S.begin()+location, 0.5*(S[location-1]+S[location]) );

z.insert( z.begin()+location, inverseCumulativeNormalOfQuantile(S[location]) );

if ( fabs(z_mid-z[location]) > accuracy ) { // Recursion if necessary.

insertAtLeastOneMorePoint( S, z, location+1, accuracy );

insertAtLeastOneMorePoint( S, z, location, accuracy );

}

}

II. Minimal process assumption valuation: The temporal copula Peter Jäckel
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III. Theoretical arbitrage considerations

There is only one catch:

This method does not guarantee risk-neutral drift conditions!

In particular, for skewed implied volatility surfaces, it does not preserve

E0

[
S(ti)
S(tj)

]
=

F (ti)
F (tj)

, (14)

or even

Et

[
dS(t)
S(t)dt

]
= µ(t) with µ(t) :=

Ḟ (t)
F (t)

(15)

This can be important for cliquets and strongly path dependent options!

However, E0

[
dS(t)
S(t)dt

]
= µ(t) can be salvaged (semi-)analytically!

III. Theoretical arbitrage considerations Peter Jäckel
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Define

y :=
∫ t

0

ω(s) dWs (16)

v :=
∫ t

0

ω2(s) ds (17)

z :=
y√
v

(18)

for some arbitrary function ω(t).

The new function ω(t) is a time-changer that effectively serves for a
consistent1 rescaling of the auto-correlation structure of z(t).

Changing the time scale of the process y driving S(t) is all we can do if
we want to retain the property that S(t) is Markovian in y(t).

1i.e. avoiding non-positive-semidefiniteness

III. Theoretical arbitrage considerations Peter Jäckel
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The process z is normally distributed for all t > 0 and satisfies

dz =
ω√
v

dW − 1
2
z
ω2

v
dt . (19)

Applying Itô’s lemma to both sides of

Φ(z) = q(S, t) ,

we can derive the stochastic differential equation for S(t):

dS = (ζ + νη)S dt+
√
ν ·

ϕ

q′
dW (20)

with
ν := ω

2
/v

z = Φ
−1

(q)

ϕ := Φ
′
(z)

ζ := −
q̇

Sq′

η := −
ϕ

Sq′

„
z +

1

2

ϕq′′

q′2

«
.

(21)

III. Theoretical arbitrage considerations Peter Jäckel
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Alas, for arbitrary (but arbitrage-free) implied volatility surfaces σ̂(K,T ),

ζ(S, t) + ν(t)η(S, t) 6= µ(t) (22)

for any choice of ν(t). However, if we compute

ζ̄(t) := E0[ζ(S, t)] and η̄(t) := E0[η(S, t)] , (23)

we can restore at least
E0[dS(t)/S(t)] = µ(t) dt (24)

by setting
ν(t) :=

[
µ(t)− ζ̄(t)

]/
η̄(t) (25)

and solving the ordinary differential equation

d ln v = ν dt (26)

numerically for the time-changing variance v(t).

III. Theoretical arbitrage considerations Peter Jäckel
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Note that the function ν(t) becomes singular for t→ 0 since it was defined in (21)
as

ν(t) =
ω2(t)∫ t

0
ω2(s) ds

. (27)

This singularity is irrelevant, though, since the value v(t1) (with t1 being the first
discrete observation time) can be chosen arbitrarily (as long as it is positive).

Ultimately, the model’s implementation needs only draw variates for a discrete
set of points in time. This can be done solely based on the values of v on
the observation times since the auto-correlation structure of the model is fully
determined by

%̂z(ti) z(tj) =

√
v(ti)
v(tj)

for any ti < tj . (28)

III. Theoretical arbitrage considerations Peter Jäckel
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IV. Enforceable arbitrage considerations

For many underlyings, the most important practical no-arbitrage condition is, the
one given in equation (14), i.e.

EM(β)

0

[
S(tj)
S(ti)

]
=

Ftj(0)
Fti(0)

,

where β(t) is the continuously rolled up money market account.

Failing this condition significantly would expose the model to the following rela-
tive value trading opportunity (assuming deterministic interest rates).

IV. Enforceable arbitrage considerations Peter Jäckel
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FORWARD PERFORMANCE RELATIVE VALUE STRATEGY:

• AT t = 0, INVEST PT1(0) CURRENCY UNITS IN ZERO COUPON BONDS FOR
MATURITY AT T1.

• AT T1, THE MATURING SINGLE CURRENCY UNIT IS USED TO BUY 1/S(T1) OF
THE UNDERLYING.

• ASSUMING NO CONVENIENCE YIELD ON THE INVESTMENT, AT T2, THE INVEST-
MENT IS WORTH EXACTLY S(T2)/S(T1).

This strategy must not, in expectation, give rise to any profit within the model
whence the value of a contract paying S(T2)/S(T1) at T2 must be PT1(0).

A refinement of the argument allowing for deterministic convenience yields leads
to the value having to satisfy PT2(0) · FT2(0)/FT1(0) which means that the model
must satisfy (14) to be protected against the explained relative value trade.

IV. Enforceable arbitrage considerations Peter Jäckel
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This can be seen as follows:

A par forward contract strike FT (0) for maturity at T as seen at inception
t = 0 is given by the current underlying price divided by the product of
a T -dated zero coupon bond and a deterministic growth factor due to the
assumed deterministic (continuously reinvested) yield on the underlying.

This means that any number N of units of the underlying held at T1, will,
due to its continuous proportional (reinvested) yield, grow from T1 to T2 to
a total of

(
FT1

(0)PT1
(0)

FT2
(0)PT2

(0)

)
·N units.

Thus, in order to hold at T2 exactly 1/S(T1) units of the underlying of net
value S(T2)/S(T1), one needs to buy, at inception, exactly

(
FT2

(0)PT2
(0)

FT1
(0)PT1

(0)

)
zero coupon bonds maturing at T1 whose proceeds at T1 are to be invested
into the asset under consideration.

IV. Enforceable arbitrage considerations Peter Jäckel
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Equation (14) can be satisfied by directly adjusting the correlation numbers
%̂(ti, tj) that are used in the time copula.

This can be done with the aid of a simple one-dimensional root finding proce-
dure. The calculation of the expectation EM(β)

0

[
S(tj)

S(ti)

]
required in each iteration

can be simplified by the aid of the following representation:

EM(β)

0

[
S(tj)
S(ti)

]
=
∫∫ q−1

tj
(Φ(ρ̂ijx+ ρ̂′ijy))

q−1
ti

(Φ(x))
· ϕ(x)ϕ(y) dx dy (29)

=
∫ [∫

ϕ(x)
q−1
ti

(Φ(−x))
· q−1
tj

(Φ(ρ̂ij · (κijy − x))) dx

]
ϕ(y) dy (30)

=
∫
θ (κij · y) · ϕ(y) dy (31)

IV. Enforceable arbitrage considerations Peter Jäckel
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wherein we have defined

ρ̂ij := ρ̂(ti, tj)

κij :=
ρ̂′ij

ρ̂ij

g(ξ − x) := q
−1
tj

(Φ(ρ̂ij · (ξ − x)))

ρ̂
′
ij :=

q
1− ρ̂2

ij

f(x) :=
ϕ(x)

q−1
ti

(Φ(−x))

θ(ξ) :=

Z
f(x)g(ξ − x) dx .

(32)

The function θ(ξ) is a convolution expression that can be computed in a single
step for many values in ξ by the aid of fast Fourier transformations. The calcu-
lation is then reduced to a one-dimensional Gauss-Hermite quadrature of the
function θ(κijy) in equation (31).

Alternatively, solving for the appropriate correlation number %̂(ti, tj) can also
be done using a bivariate Gauss-Hermite quadrature for the calculation of
EM(β)

0

[
S(tj)

S(ti)

]
in each iteration of the root-finding procedure.

In practice, bivariate Gauss-Hermite quadrature can be made so robust and
fast [Jäc05] that the more complicated procedure above is not necessary.

IV. Enforceable arbitrage considerations Peter Jäckel
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V. Interest rate convexity effects

In general, especially when the hybrid product contains interest rate compo-
nents, the value of the numéraire N(T ) is not independent of S(T ).

This means,
EM(N)

T [1/N(T )] 6= PT (0)/N(0)
which makes it harder to reduce the evaluation of (10) to the quadrature problem∫

π(q−1
T (u)) du .

In this case, we may need to resort to approximate representations of 1/N(T )
as a functional form of S(T ) such as the commonly used linear swap rate, con-
stant yield, or similar approximations.

There are, however, product variations that make the use
of measure change techniques unnecessary!

V. Interest rate convexity effects Peter Jäckel
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Example:

A client is interested in the total return on a swap as part of a basket.

Ü As a proxy, one can use the sum of future Libor fixings, each of which is
rolled up at a zero coupon rate (determined at the time of its fixing) from its
natural payment time to the performance basket evaluation time:

R :=
N−1∑
i=1

Li(Ti) ·
PTi+1

(Ti)
PTN(Ti)

(33)

Li
PN

Pi+1

T
i+1

T
i

today

T
N

V. Interest rate convexity effects Peter Jäckel
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Valuation of all Libor constituents in the terminal measureM(PTN) is easy since
the risk-neutral distribution of Li(Ti) ·

PTi+1
(Ti)

PTN
(Ti)

in the measure M(PTN) is the

same as the risk-neutral distribution of Li(Ti) ·
PTi+1

(0)

PTN
(0) in the measureM(PTi+1

):

(
Li(Ti) ·

PTi+1
(Ti)

PTN(Ti)

∣∣∣∣FTi)M(PTN
)

=̂
(
Li(Ti) ·

Pi+1(0)
PN(0)

∣∣∣∣FTi)M(PTi+1
)

(34)

Ü The measureM(PTi+1
) is the natural measure of Li !

Ü The quantile map for the Libor constituents under M(PTN) can
be built directly from the respective caplet smile !

V. Interest rate convexity effects Peter Jäckel
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When product modifications to proxy the client requests are not attainable, ac-
tual convexity corrections have to be invoked.

For instance, for the valuation of CMS constituents, we may need a quantile map
representing the distribution of a swap rate in a TN forward measure.

Denote ψ
M(Ai)
IR,Ti

(si) as the risk-neutral density of the swap rate si in its natural
measure induced by the annuity Ai.

This means that the price of an infinitesimal receiver spread swaption on the
forward starting swap rate si (i.e. a digital put on the annuity-weighted swap
rate) struck at K is given by

Ai(0) ·ΨM(Ai)
IR,Ti

(K) = Ai(0) ·
[
Φ (−d2) + si(0) ·

√
Ti · ϕ (d1) · ∂Kσ̂si(K)

]
(35)

with
ΨM(Ai)′

IR,Ti
(K) = ψ

M(Ai)
IR,Ti

(K) . (36)

V. Interest rate convexity effects Peter Jäckel
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For hybrid valuation in the measure M(PTN), we need to construct a quantile
map consistent with the density ψM(PTN

)
IR,Ti

(si) which is given by

ψ
M(PTN

)
IR,Ti

(si) =
dM(PTN)
dM(Ai)

· ψM(Ai)
IR,Ti

(si)

=
Ai(0)
PTN(0)

·
PTN
Ai
· ψM(Ai)

IR,Ti
(si) . (37)

A comparatively straightforward and commonly used approximation for this pur-
pose [Hag03] is

Pj(Ti)
PTN(Ti)

≈ (1 + τsi)TN−Tj (38)

which is to be applied to

PTN
Ai

=
1∑N

j=i+1 τj
PTj
PTN

. (39)

V. Interest rate convexity effects Peter Jäckel
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In other words:

ψ
M(PTN

)
IR,Ti

(si) ≈ constant ·
ψ
M(Ai)
IR,Ti

(si)
N∑

j=i+1

τj (1 + τsi)
TN−Tj

(40)

1
constant

:=
∫

ψ
M(Ai)
IR,Ti

(s)
N∑

j=i+1

τj (1 + τs)TN−Tj
ds (41)

ΨM(PTN
)

IR,Ti
(si) ≈ constant ·

si∫
−∞

ψ
M(Ai)
IR,Ti

(s)
N∑

j=i+1

τj (1 + τs)TN−Tj
ds (42)

Note that all integrals involving ψ
M(Ai)
IR,Ti

(s) can be changed into integrals over

ΨM(Ai)
IR,Ti

(s) by the aid of partial integration.

V. Interest rate convexity effects Peter Jäckel
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Ü The quantile map
z
M(PTN

)
si ↔ si (43)

is implicitly given by
Φ(zsi) = ΨM(PTN

)
IR,Ti

(si) (44)

and can be set up with monotonicity preserving interpolation algorithms as in
the previous sections.

Each point in the quantile map involves a one-dimensional numerical integration
to compute the integral on the right hand side of equation (42).

In practice, however, all of the required integrals can be carried out in a sin-
gle swoop which makes the construction of the constant-yield-to-maturity based
swap rate quantile map particularly efficient.

V. Interest rate convexity effects Peter Jäckel
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We now have a one-factor representation of the yield curve given by zsi for each
of the observation times Ti.

In order to price hybrid derivatives, we need to construct a convexity corrected
quantile map for other involved assets such as equity, FX, commodities, etc.

With the definition

χ
PTi

(zsi) :=
dM(PTi)
dM(PTN)

≈ constant2 · (1 + τ · si(zsi))
TN−Ti (45)

and assuming that the natural measure for the pricing of options in asset class
X expiring at Ti isM(PTi), we have

E
M(PTN

)
Ti

[
1{xTi<K} · χPTi

]
= E

M(PTi
)

Ti

[
1{xTi<K}

]
= ΨM(PTi

)
X,Ti

(K) . (46)

2 The normalisation constant is defined by E
M(PTN

)
Ti

h
χ
PTi

i
= 1.

V. Interest rate convexity effects Peter Jäckel
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Recall that we ultimately seek a quantile map

z
M(PTN

)
xTi

↔ xTi . (47)

Assuming the Gaussian copula correlation structure

〈zxTi
, zsi〉 = %zxTi zsi

= 2 · sin
(π

6
ρΦ(zxTi) Φ(zsi)

)
(48)

we can decompose the standard Gaussian variate zsi into a part that is corre-
lated with zxTi

and an independent standard normal residual ε:

zsi := % · zxTi
+ %′ · ε (49)

with
%′ :=

√
1− %2 . (50)

V. Interest rate convexity effects Peter Jäckel
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This enables us to associate a Gaussian equivalent variable zM(PTN )

xTi
(K) with a

given strike K:

E
M(PTN

)
Ti

[
1{xTi<K} · χPTi

]
=

zM(PTN )

xTi
(K)∫

z=−∞

∞∫
ε=−∞

χ
PTi

(% · z + %′ε) · ϕ(z) · ϕ(ε) dzdε

(51)

Defining the auxiliary function

f(zK) :=

zK∫
−∞

∫
χ
PTi

(% · z + %′ε) · ϕ(ε) dε · ϕ(z) dz (52)

we now invoke the Harrison-Pliska theorem that was used in equation (46)

f(zK) = E
M(PTN

)
Ti

[
1{xTi<K} · χPTi

]
= E

M(PTi
)

Ti

[
1{xTi<K}

]
= ΨM(PTi

)
X,Ti

(K) (53)
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The quantile map
z
M(PTN

)
xTi

↔ xTi .

is thus to be constructed as follows:

For any Gaussian equivalent zxTi
, compute

zxTi
→ f(zxTi

) (54)

From here, calculate the associated asset price level xTi
= xTi

(zxTi
) by numerical

inversion3 of ΨM(PTi
)

X,Ti
:

xTi = ΨM(PTi
)

X,Ti

−1
(f(zxTi

)) (55)

Ü The construction of convexity corrected quantile maps for
the individual assets can be done with no more complexity

than the construction of the yield curve dynamics!

3 This is again most efficiently done by tabulating the intermediate values and using a monotonicity preserving
inverse interpolation.
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It is of course also possible to set up the yield curve dynamics without the con-
stant yield approximation and to use instead fully fledged Markov-functional dy-
namics.

In that case, the yield curve quantile maps (one for each observation time) ought
to be constructed in reverse chronological order.

When calibrating the model to coterminal swaptions, it is efficient to keep the
value of the Radon-Nikodym derivative that was used to transform from the swap
rate’s natural measure to the TN forward measure and the inverse of the relative
numéraire (the TN maturing zero coupon bond) stored together with the quantile-
level associated value of the swap rate itself:

si ↔ zsi ↔
(
χ̃
Ai

(zsi),
1

PTN
(Ti|zsi)

)
(56)

with
χ̃
Ai

(zsi) := Ai(Ti|zsi)

PTN
(Ti|zsi)

(57)
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The quantile map is again constructed by the aid of the market given risk-neutral
probabilities and the fundamental asset pricing theorem

E
M(Ai)
Ti

[
1{si<K}

]
= E

M(PTN
)

Ti

[
1{si<K} · χAi

]
(58)

ΨM(Ai)
IR,Ti

(si) =

zsi∫
−∞

χ
Ai

(z)ϕ(z) dz (59)

with

χ
Ai

(zsi) :=
χ̃
Ai

(zsi)∫
χ̃
Ai

(z)ϕ(z) dz
(60)

The construction of the quantile map si ↔ zsi is again done by computing
zsi∫
−∞

χ
Ai

(z)ϕ(z) dz for many values of zsi, and by equating it to the (numerically) in-

vertible function ΨM(Ai)
IR,Ti

(si), which is to be solved for the associated value si(zsi).
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Given the quantile map at a later time,

si+1 ↔ zsi+1
↔

(
χ̃
Ai+1

(zsi+1
), 1
PTN

(Ti+1|zsi+1)

)
, (61)

and the temporal copula(
zsi, zsi+1

)
∼ N

(
0, 0,

 
1 %zsi

zsi+1

%zsi
zsi+1

1

!)
(62)

the function χ̃
Ai

(zsi) can be evaluated from

χ̃
Ai

(zsi) = Ai(Ti|zsi)

PTN
(Ti|zsi)

= Ai+1(Ti|zsi)+τiPi+1(Ti|zsi)

PTN
(Ti|zsi)

= E
M(PTN

)
Ti+1

[
Ai+1
PTN

∣∣∣ zsi

]
+ τi · E

M(PTN
)

Ti+1

[
PTi+1
PTN

∣∣∣ zsi

]
=
∫
χ̃
Ai+1

(zsi+1
|zsi)ϕ(ε) dε+ τi ·

∫
ϕ(ε)

PTN
(Ti+1|(zsi+1|zsi))

dε (63)
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A practical method for the valuation of a variety of hybrid products 41

which can be done very efficiently by Gauss-Hermite quadrature:

χ̃
Ai

(zsi) =
∫
χ̃
Ai+1

(zsi+1
(zsi, ε))ϕ(ε) dε+ τi

∫
ϕ(ε)

PTN
(Ti+1|zsi+1(zsi,ε))

dε (64)

with
zsi+1

(zsi, ε) := zsi · %zsizsi+1
+ ε ·

√
1− %2

zsizsi+1
(65)

The inverse numéraire value at Ti conditional on zsi can be computed from a
martingale condition on the numéraire-relative value of the floating leg:

siAi = PTi − PTi+1
+ PTi+1

− PTN
(siAi)| FTi =

(
1− PTi+1

+ si+1(Ti)Ai+1

)∣∣FTi (66)

si(zsi)
Ai

PTN

∣∣∣∣ zsi =
1

PTN
(Ti|zsi)

−
PTi+1

(Ti|zsi)

PTN
(Ti|zsi)

+
si+1(Ti|zsi)Ai+1(Ti|zsi)

PTN
(Ti|zsi)

si(zsi)χ̃Ai(zsi) =
1

PTN
(Ti|zsi)

− E
M(PTN

)
Ti+1

[
PTi+1

PTN

∣∣∣∣ zsi

]
+ E

M(PTN
)

Ti+1

[
si+1Ai+1

PTN

∣∣∣∣ zsi

]
(67)
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Ü

1
PTN

(Ti|zsi)
= si(zsi)χ̃Ai(zsi) +

∫
ϕ(ε)

PTN
(Ti+1|zsi+1(zsi,ε))

dε (68)

−
∫

si+1(zsi+1
(zsi, ε)) · χ̃Ai+1

(zsi+1
(zsi, ε)) · ϕ(ε) dε

The construction of convexity corrected quantile maps for the remaining asset
classes is not affected by the method chosen for the construction of the yield
curve dynamics:

ΨM(PTi
)

X,Ti
(xTi

) =

zxTi∫
−∞

∫
χ
PTi

(zsi(zx, ε)) · ϕ(ε) dε · ϕ(zx) dzx (69)

zsi(zx, ε) := zx · %zxTizsi
+ ε ·

√
1− %2

zxTizsi
(70)

xTi ↔ z
M(PTN

)
xTi

(71)
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VI. Sample structures

• Best of Asianed equity return, CPI(terminal)/CPI(initial), and fixed re-
turn.

This constitutes a capital guaranteed note with inflation protection that bene-
fits from any sustained economic upturn.

• Option on weighted average of Asianed equity, Asianed FX return,
Asianed commodity return, and yield curve lift.

This kind of deal is also typically wrapped up in a capital guaranteed note
for investors. The yield curve lift is here defined as the difference between a
CMS rate at expiry minus the same CMS rate at inception.
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VII. Mean reversion

Certain underlying investment classes are not (always) well modelled by an
auto-correlation structure that is close to that of geometric Brownian motion.

• Interest rates

• Commodities

• Inflation

VII. Mean reversion Peter Jäckel
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Figure VII.1. Term structure of crude oil implied volatility and associated forward Black variance.
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• When storing the investment asset is physically difficult or strictly im-
possible for fundamental reasons, deformations of the forward curve
are possible.

• In this case, enforcing (14) is not desirable.

• Instead, decorrelation of the curve is desirable for realistic modelling or
better repricing of related derivatives.

The driving process (16) can be replaced
by a mean-reverting Gaussian process:

dy(t) = −κ · y(t) dt+ α(t) dW

VII. Mean reversion Peter Jäckel
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The covariances of the driving processes #k and #l are given by:

Cov[yk(ti), yl(tj)] = e−κkti−κltj

min(ti,tj)∫
0

e(κk+κl)sαk(s)αl(s)ρkl(s) ds (72)

Note: since the model still always reprices all plain vanilla options
correctly by construction, the only effect of the introduction
of mean-reversion is a reduction in auto-correlation of the
driving process.

Ü The model is de facto identical with a
Monte-Carlo version of a multivariate hybrid

Markov-functional model.
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VIII. Summary

Main points of the hybrid Markov functional model :-

• All plain vanilla options are repriced exactly by construction.

• It is comparatively fast.

• It handles multiple underlyings very naturally.

• For storable investment assets, it should only really be used for
weakly path dependent derivatives because it doesn’t preserve
the risk-neutral drift condition, and then in conjunction with a se-
lected expectation correction method.
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