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1 Introduction

Gaussian quadratures are an ingenious way to approx-
imate the integral of an unknown functionf(x) over
a specified domainD with a known weighting kernel
ψ(x). If the functionf(x) is well approximated by a
polynomial of order2m− 1, then a quadrature withn
nodes suffices for a good estimate of the integral, i.e.∫

D
f(x)ψ(x) dx ≈

m∑
i=1

wif(xi) . (1)

The nodesxi and weightswi are uniquely determined
by the choice of the domainD and the weighting ker-
nelψ(x). In fact, one may go as far as to say that the
choice of the domain and the kerneldefinesa quadra-
ture. In particular, the location of the nodesxi are
given by the roots of the polynomial of orderm in the
sequence of orthonormal polynomials{πj} generated
by the metric〈πj|πk〉 :=

∫
D πj(x)πk(x)ψ(x) dx =

δjk, and the weightswi can be computed from a linear
system once the roots are known. The mathematics of
quadrature methods is well understood and described
in most textbooks on numerical analysis [PTVF92].

In the case of the integration domain to be the en-
tire real axis, and the integration kernel given by the
density of a standard normal distribution, the associate
quadrature scheme is known under the nameGauss-
Hermite since the involved orthogonal polynomials
turn out to be Hermite polynomials. Gauss-Hermite
quadrature is of fundamental importance in many ar-
eas of applied mathematics that uses statistical rep-
resentations, e.g. financial mathematics and actuarial
sciences. Reliable routines for the calculation of the
roots and weights are readily available [PTVF92] and
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most mathematical software packages provide means
for one-dimensional Gauss-Hermite quadrature calcu-
lations.

2 Multivariate Gaussian quadra-
ture

In contrast to one-dimensional Gauss-Hermite quadra-
ture, already at the level of two dimensions little is
published on Gaussian quadrature with a multivariate
normal metric

ϕ(r, C) =
e−

1
2
r>·C−1·r

(2π)
d/2

√
|C|

(2)

with the correlation matrixC, apart from the obvious
recommendation to decompose it into a sequence of
nested one-dimensional quadratures.

This is where we start having a large amount of
ambiguity: the set of nested one-dimensional integra-
tions effectively amounts to a multivariate quadrature
within which the integrand is evaluated at a discrete
set of points and the computed function values are
summed with weightings given by products of one-
dimensioal weights. Since the alignment of the one-
dimensional integrations is totally arbitrary, we ef-
fectively have a multitude of integration schemes at
our disposal. To explain this in simple terms, as-
sume that we are to compute a two-dimensional Gaus-
sian integral

∫∫
f(x, y)ϕ(x)ϕ(y) dx dy with zero cor-

relation between the two standard normal variatesx
and y. We can construct a two-dimensional Gaus-
sian quadrature scheme withm ×m function evalua-
tions from a one-dimensional Gauss-Hermite quadra-
ture with roots{zk} and weights{wk} for k = 1..m
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by the summation

m,m∑
i=1,j=1

wiwjf(zi, zj) . (3)

This scheme essentially samples the functionf on a
set of points in a rectangular configuration as shown
in figure 1 for m = 15 where contourlines of the
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Figure 1: Sampling from a simple combination of one-
dimensional Gauss-Hermite quadratures results in a rectangular

set of function evaluation points.

distribution have been added for comparison. Since
we have zero correlation betweenx andy, we could
have chosen any arbitrary planar rotation of the the set
{(zi, zj)} → {(z′i, z′j)} with

z′ = R · z (4)

with R being a rotation operator, and we will come
back to this observation later.

Another aspect of the weighted sampling scheme
depicted in figure1 is that the sheer appearance of
the sampling set has one obvious unpleasant feature:
on the diagonal, sampling points go much further in
terms of distance to the origin than along the axes.
Since the function values in those corner regions end
up being weighted with extremely low weights, they
contribute practically nothing at all to the total inte-
gral value. As a consequence, the quadrature scheme
effectively wastes precious calculation time in the cor-
ners. This can be remedied to some extent, however,

by the aid of the age-old straightforward trick known
aspruning. We may simply set a threshold, say

θm :=
w1 · w[m+1

2 ]

m
, (5)

and drop all points that would be weighted with a net
weight belowθm:

m,m∑
i=1,j=1

1{wiwj>θm} · wiwjf(zi, zj) . (6)

The effect of pruning can be seen in figure2.
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Figure 2: Pruning.

So far, we ignored correlation. In practice, we usu-
ally have non-zero correlation requirements. It may
appear obvious to the reader how to account for cor-
relation, though, here again, we have ambiguity as to
how to proceed. An immediately intuitive method to
incorporate correlation of magnitudeρwould be to use

m,m∑
i=1,j=1

wiwjf(zi, ρzi + ρ′zj) (7)

with ρ′ :=
√

1− ρ2. What we are implicitly doing
with this scheme is that we are transforming from
uncorrelated to correlated variates by the aid of a
Cholesky decomposition:

r = L · z (8)

The lower triangular matrixL satisfiesL ·L> = C. A
surprising side-effect of this algorithm is that we are
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Figure 3: Correlation incorporation by the aid of Cholesky de-
composition. Top left:ρ = 0.5. Top right: ρ = 0.5 (pruned).

Bottom left:ρ = 0.95. Bottom right:ρ = 0.95 (pruned).

not sampling symmetrically with respect to the princi-
pal axes which is in practice usually, though arguably,
a desirable feature to have for a multivariate quadra-
ture scheme1. The effect of Cholesky decomposition
on the sampling set is shown in figure3.

An alternative to Cholesky decomposition, and one
that is definitely to be preferred when Monte Carlo
methods with low-discrepancy number generators are
used, is to decompose spectrally [Jäc02]: find the
eigensystemS and diagonal eigenvalue matrixΛ of
C such that

C = S · Λ · S> , (9)

set
A := S ·

√
Λ , (10)

and sample from the correlated set of sampling points

r = A · z . (11)

This scheme takes care of alignment with principal
axes and the resulting sampling set is shown in fig-
ure4.

We now return to the issue of arbitrary rotation.
We can see in figure4 that the automatic alignment
with principal axes incurred by spectral incorporation
of correlation effectively rotates the original square of

1This is a purely empirical observation.
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Figure 4: Correlation incorporation by the aid of spectral decom-
position. Top left:ρ = 0.5. Top right:ρ = 0.5 (pruned). Bottom

left: ρ = 0.95. Bottom right:ρ = 0.95 (pruned).

sampling points showin in figure1 such that the axes
of the square become aligned with the principal axes.
Out of all possible sections through the initial square,
however, it is probably a different one that we would
have preferred to become aligned with the principal
axes, namely the one that already enhances sampling
along the respective direction by virtue of the geom-
etry of a square: the direction along the diagonals of
the square. In two dimensions, this can be achieved by
rotating2 the set of uncorrelated standard normal vari-
ates on a square grid by 45◦ prior to the principal axes
transformation. In higher dimensions, this can be done
analogously: transform the initial set ofd-dimensional
rectangular grid coordinates by a sequence ofd−1 pla-
nar rotations of 45◦ degrees (the net rotation of which
may be denoted asR), and then transform to principal
axes by setting

r = A ·R · z . (12)

In two dimensions, this scheme can be reduced to the
formula

m,m∑
i=1,j=1

1{wiwj>θm}·wiwjf(azi + bzj, bzi + azj) (13)

with
2It doesn’t matter whether clockwise or counter-clockwise:

both ways lead to the desired effect.
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Figure 5: Principal axes rotation with spectral decomposition.
Top left: ρ = 0.5. Top right: ρ = 0.5 (pruned). Bottom left:

ρ = 0.95. Bottom right:ρ = 0.95 (pruned).

a :=

√
1 + ρ+

√
1− ρ

2
(14)

b :=

√
1 + ρ−

√
1− ρ

2
. (15)

The effect of this scheme is shown in figure5.
One could, of course, also apply the upfront rota-

tion to the Cholesky decomposition scheme, and this
results in the sampling set shown in figure6

As we can see, the rotation-Cholesky scheme sam-
ples over a set of points that appear to be be just
slightly skewed away from the principal axes. In
contrast, the rotation-spectral scheme preserves sym-
metry with respect to the principal axes. This may
be one of the reasons why I found empirically the
two-dimensional Gaussian quadrature scheme given
by equation (13) to be the most robust in practical ap-
plications among those presented above.

3 Polar coordinates

In the previous section, we discussed the various pos-
sible choices how a multi-dimensional zero correla-
tion Gauss-Hermite quadrature scheme can be adapted
to account for correlation. The underlying scheme for
zero correlation was given by a sequence of nested
one-dimensional standard Gauss-Hermite quadratures
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Figure 6: Principal axes rotation with Cholesky decomposition.
Top left: ρ = 0.5. Top right: ρ = 0.5 (pruned). Bottom left:

ρ = 0.95. Bottom right:ρ = 0.95 (pruned).

which resulted effectively in a rectangular sampling
grid. For two-dimensional problems, an alternative to
this approach can be found by transforming the origi-
nal integration problem to polar coordinates:∫∫

f(x, y)e
− 1

2(x2+y2)
2π

dx dy = (16)

1∫
0

∞∫
0

f (r cos [2πu], r sin [2πu]) e−
1
2
r2
r dr du

At this point, it is tempting to continue with

1∫
0

∞∫
0

f (r cos [2πu], r sin [2πu]) e−
1
2
r2
r dr du =

(17)
1∫

0

∞∫
0

f
(√

v cos [2πu],
√
v sin [2πu]

)
e−v dv du

and use Gauss-Laguerre quadrature for the inner in-
tegral. Hold your horses right there! This will not
work since, chances are,f(·, ·) is a reasonably smooth
function near the origin. This is because all Gaussian
quadrature scheme are designed to work well for func-
tions that are well or reasonably well approximated
by polynomials. The square root function introduced
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in transformation (17), however, has no polynomial
representation at all! Thus, no matter how high we
may go in the Gauss-Laguerre quadrature order, we
will never be able to capture the fact that the square
root function is not differentiable at the origin, and
as a consequence, a two-dimensional Gauss-Hermite
quadrature based on transformation (17) is very inef-
ficient and unreliable.

Still, the idea of the polar coordinate transforma-
tion (16) may not be all that bad after all. The main
crux is that the roots and weights for a quadrature on
the domainr ∈ (0,∞) with metric e−

1
2
r2
r are not

readily available. However, if we manage to compute
the roots{rj} and weights{ωj} for j = 1..m for the
m-th order quadrature

∞∫
0

f(r) e−
1
2
r2
r dr ≈

m∑
j=1

ωjf(rj) , (18)

then the polar coordinate approach to two-dimensional
Gauss-Hermite quadrature (16) can be used still!
The required mathematics for the calculation of
the roots {rj} and weights {ωj} for any one-
dimensional quadrature defined by its integration do-
main and weighting kernel is described excellently
in [PTVF92]. For the particular case (18), the roots
and weights have been computed and are tabulated up
to order 40 in [Jäc05].

The last point to be addressed is the outer integral
on the right hand side of equation (16). A näıve at-
tempt would be to tackle this one by the aid of Gauss-
Legendre quadrature. However, since in practice the
function f (r cos [2πu] , r sin [2πu]) is almost surely
not of polynomial form inu for constantr, this is also
unlikely to lead to satisfactory results. Without fur-
ther knowledge, and to avoid the risk of introducing a
lateral bias, one may need to resort to simply equally
weighted sampling inu, i.e.uj := (j−1)/m with equal
weights1/m. An example for this is shown in figure7.

It remains to be mentioned that, since three-
dimensional polar coordinates are also well tried
and tested in mathematics and numerical analysis,
it is conceivable that the approach shown for two-
dimensionsal polar coordinates can be extended to
three dimensions.
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Figure 7: 16 × 16 two-dimensional Gauss-Hermite quadrature
roots set based on the polar coordinate transformation (16). Top
left: ρ = 0.5. Top right: ρ = 0.5 (pruned). Bottom left:ρ =

0.95. Bottom right:ρ = 0.95 (pruned).
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